Loading…
Maximum likelihood estimates, from censored data, for mixed-Weibull distributions
An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem ti...
Saved in:
Published in: | IEEE transactions on reliability 1992-06, Vol.41 (2), p.248-255 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3 |
container_end_page | 255 |
container_issue | 2 |
container_start_page | 248 |
container_title | IEEE transactions on reliability |
container_volume | 41 |
creator | Jiang, S. Kececioglu, D. |
description | An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem time-to-failure data. The MLEs of the nonpostmortem data are obtained for mixed-Weibull distributions with up to 14 parameters in a five-subpopulation mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore the algorithm should start at several initial guesses of the parameters set. It is shown that the EM algorithm is very efficient. On the average for two-Weibull mixtures with a sample size of 200, the CPU time (on a VAX 8650) is 0.13 s/iteration. The number of iterations depends on the characteristics of the mixture. The number of iterations is small if the subpopulations in the mixture are well separated. Generally, the algorithm is not sensitive to the initial guesses of the parameters.< > |
doi_str_mv | 10.1109/24.257791 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_257791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>257791</ieee_id><sourcerecordid>28393984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouK4evHrqQQTBrkmapJmjLH7BigiKx5JNpxhtmzVpYf33dumy1z3N1zPvDDOEnDM6Y4zCLRczLvMc2AGZMCl1ynLODsmEUqZTkByOyUmM30MoBOgJeXsxa9f0TVK7H6zdl_dlgrFzjekw3iRV8E1isY0-YJmUpjNDzoekcWss0090y76uk9LFLgxu53wbT8lRZeqIZ1s7JR8P9-_zp3Tx-vg8v1ukNlO6S7OKUi6XlhnGc2FsxgxyhYprLQwXYFBgLrktBbOgmVRQcaBKQ5krBQqzKbkadVfB__bDzkXjosW6Ni36PhYchjkg5X5QZ5CBFvtBmXOtAAbwegRt8DEGrIpVGC4W_gpGi80bCi6K8Q0De7kVNdGaugqmtS7uGmQGlPMNdjFiDhF31a3GP3rDjgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25728699</pqid></control><display><type>article</type><title>Maximum likelihood estimates, from censored data, for mixed-Weibull distributions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiang, S. ; Kececioglu, D.</creator><creatorcontrib>Jiang, S. ; Kececioglu, D.</creatorcontrib><description>An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem time-to-failure data. The MLEs of the nonpostmortem data are obtained for mixed-Weibull distributions with up to 14 parameters in a five-subpopulation mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore the algorithm should start at several initial guesses of the parameters set. It is shown that the EM algorithm is very efficient. On the average for two-Weibull mixtures with a sample size of 200, the CPU time (on a VAX 8650) is 0.13 s/iteration. The number of iterations depends on the characteristics of the mixture. The number of iterations is small if the subpopulations in the mixture are well separated. Generally, the algorithm is not sensitive to the initial guesses of the parameters.< ></description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/24.257791</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Data analysis ; Data engineering ; Exact sciences and technology ; Failure analysis ; Life estimation ; Mathematics ; Maximum likelihood estimation ; Parameter estimation ; Parametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistical analysis ; Statistical distributions ; Statistics ; Stress ; Weibull distribution</subject><ispartof>IEEE transactions on reliability, 1992-06, Vol.41 (2), p.248-255</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3</citedby><cites>FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/257791$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5390221$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, S.</creatorcontrib><creatorcontrib>Kececioglu, D.</creatorcontrib><title>Maximum likelihood estimates, from censored data, for mixed-Weibull distributions</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem time-to-failure data. The MLEs of the nonpostmortem data are obtained for mixed-Weibull distributions with up to 14 parameters in a five-subpopulation mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore the algorithm should start at several initial guesses of the parameters set. It is shown that the EM algorithm is very efficient. On the average for two-Weibull mixtures with a sample size of 200, the CPU time (on a VAX 8650) is 0.13 s/iteration. The number of iterations depends on the characteristics of the mixture. The number of iterations is small if the subpopulations in the mixture are well separated. Generally, the algorithm is not sensitive to the initial guesses of the parameters.< ></description><subject>Data analysis</subject><subject>Data engineering</subject><subject>Exact sciences and technology</subject><subject>Failure analysis</subject><subject>Life estimation</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Statistics</subject><subject>Stress</subject><subject>Weibull distribution</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouK4evHrqQQTBrkmapJmjLH7BigiKx5JNpxhtmzVpYf33dumy1z3N1zPvDDOEnDM6Y4zCLRczLvMc2AGZMCl1ynLODsmEUqZTkByOyUmM30MoBOgJeXsxa9f0TVK7H6zdl_dlgrFzjekw3iRV8E1isY0-YJmUpjNDzoekcWss0090y76uk9LFLgxu53wbT8lRZeqIZ1s7JR8P9-_zp3Tx-vg8v1ukNlO6S7OKUi6XlhnGc2FsxgxyhYprLQwXYFBgLrktBbOgmVRQcaBKQ5krBQqzKbkadVfB__bDzkXjosW6Ni36PhYchjkg5X5QZ5CBFvtBmXOtAAbwegRt8DEGrIpVGC4W_gpGi80bCi6K8Q0De7kVNdGaugqmtS7uGmQGlPMNdjFiDhF31a3GP3rDjgg</recordid><startdate>19920601</startdate><enddate>19920601</enddate><creator>Jiang, S.</creator><creator>Kececioglu, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19920601</creationdate><title>Maximum likelihood estimates, from censored data, for mixed-Weibull distributions</title><author>Jiang, S. ; Kececioglu, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Data analysis</topic><topic>Data engineering</topic><topic>Exact sciences and technology</topic><topic>Failure analysis</topic><topic>Life estimation</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Statistics</topic><topic>Stress</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, S.</creatorcontrib><creatorcontrib>Kececioglu, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, S.</au><au>Kececioglu, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum likelihood estimates, from censored data, for mixed-Weibull distributions</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>1992-06-01</date><risdate>1992</risdate><volume>41</volume><issue>2</issue><spage>248</spage><epage>255</epage><pages>248-255</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem time-to-failure data. The MLEs of the nonpostmortem data are obtained for mixed-Weibull distributions with up to 14 parameters in a five-subpopulation mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore the algorithm should start at several initial guesses of the parameters set. It is shown that the EM algorithm is very efficient. On the average for two-Weibull mixtures with a sample size of 200, the CPU time (on a VAX 8650) is 0.13 s/iteration. The number of iterations depends on the characteristics of the mixture. The number of iterations is small if the subpopulations in the mixture are well separated. Generally, the algorithm is not sensitive to the initial guesses of the parameters.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/24.257791</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 1992-06, Vol.41 (2), p.248-255 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_ieee_primary_257791 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Data analysis Data engineering Exact sciences and technology Failure analysis Life estimation Mathematics Maximum likelihood estimation Parameter estimation Parametric inference Probability and statistics Sciences and techniques of general use Statistical analysis Statistical distributions Statistics Stress Weibull distribution |
title | Maximum likelihood estimates, from censored data, for mixed-Weibull distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20likelihood%20estimates,%20from%20censored%20data,%20for%20mixed-Weibull%20distributions&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Jiang,%20S.&rft.date=1992-06-01&rft.volume=41&rft.issue=2&rft.spage=248&rft.epage=255&rft.pages=248-255&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/24.257791&rft_dat=%3Cproquest_ieee_%3E28393984%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25728699&rft_id=info:pmid/&rft_ieee_id=257791&rfr_iscdi=true |