Loading…

Maximum likelihood estimates, from censored data, for mixed-Weibull distributions

An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem ti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on reliability 1992-06, Vol.41 (2), p.248-255
Main Authors: Jiang, S., Kececioglu, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3
cites cdi_FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3
container_end_page 255
container_issue 2
container_start_page 248
container_title IEEE transactions on reliability
container_volume 41
creator Jiang, S.
Kececioglu, D.
description An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem time-to-failure data. The MLEs of the nonpostmortem data are obtained for mixed-Weibull distributions with up to 14 parameters in a five-subpopulation mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore the algorithm should start at several initial guesses of the parameters set. It is shown that the EM algorithm is very efficient. On the average for two-Weibull mixtures with a sample size of 200, the CPU time (on a VAX 8650) is 0.13 s/iteration. The number of iterations depends on the characteristics of the mixture. The number of iterations is small if the subpopulations in the mixture are well separated. Generally, the algorithm is not sensitive to the initial guesses of the parameters.< >
doi_str_mv 10.1109/24.257791
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_257791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>257791</ieee_id><sourcerecordid>28393984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouK4evHrqQQTBrkmapJmjLH7BigiKx5JNpxhtmzVpYf33dumy1z3N1zPvDDOEnDM6Y4zCLRczLvMc2AGZMCl1ynLODsmEUqZTkByOyUmM30MoBOgJeXsxa9f0TVK7H6zdl_dlgrFzjekw3iRV8E1isY0-YJmUpjNDzoekcWss0090y76uk9LFLgxu53wbT8lRZeqIZ1s7JR8P9-_zp3Tx-vg8v1ukNlO6S7OKUi6XlhnGc2FsxgxyhYprLQwXYFBgLrktBbOgmVRQcaBKQ5krBQqzKbkadVfB__bDzkXjosW6Ni36PhYchjkg5X5QZ5CBFvtBmXOtAAbwegRt8DEGrIpVGC4W_gpGi80bCi6K8Q0De7kVNdGaugqmtS7uGmQGlPMNdjFiDhF31a3GP3rDjgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25728699</pqid></control><display><type>article</type><title>Maximum likelihood estimates, from censored data, for mixed-Weibull distributions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiang, S. ; Kececioglu, D.</creator><creatorcontrib>Jiang, S. ; Kececioglu, D.</creatorcontrib><description>An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem time-to-failure data. The MLEs of the nonpostmortem data are obtained for mixed-Weibull distributions with up to 14 parameters in a five-subpopulation mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore the algorithm should start at several initial guesses of the parameters set. It is shown that the EM algorithm is very efficient. On the average for two-Weibull mixtures with a sample size of 200, the CPU time (on a VAX 8650) is 0.13 s/iteration. The number of iterations depends on the characteristics of the mixture. The number of iterations is small if the subpopulations in the mixture are well separated. Generally, the algorithm is not sensitive to the initial guesses of the parameters.&lt; &gt;</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/24.257791</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Data analysis ; Data engineering ; Exact sciences and technology ; Failure analysis ; Life estimation ; Mathematics ; Maximum likelihood estimation ; Parameter estimation ; Parametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistical analysis ; Statistical distributions ; Statistics ; Stress ; Weibull distribution</subject><ispartof>IEEE transactions on reliability, 1992-06, Vol.41 (2), p.248-255</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3</citedby><cites>FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/257791$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5390221$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, S.</creatorcontrib><creatorcontrib>Kececioglu, D.</creatorcontrib><title>Maximum likelihood estimates, from censored data, for mixed-Weibull distributions</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem time-to-failure data. The MLEs of the nonpostmortem data are obtained for mixed-Weibull distributions with up to 14 parameters in a five-subpopulation mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore the algorithm should start at several initial guesses of the parameters set. It is shown that the EM algorithm is very efficient. On the average for two-Weibull mixtures with a sample size of 200, the CPU time (on a VAX 8650) is 0.13 s/iteration. The number of iterations depends on the characteristics of the mixture. The number of iterations is small if the subpopulations in the mixture are well separated. Generally, the algorithm is not sensitive to the initial guesses of the parameters.&lt; &gt;</description><subject>Data analysis</subject><subject>Data engineering</subject><subject>Exact sciences and technology</subject><subject>Failure analysis</subject><subject>Life estimation</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Statistics</subject><subject>Stress</subject><subject>Weibull distribution</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouK4evHrqQQTBrkmapJmjLH7BigiKx5JNpxhtmzVpYf33dumy1z3N1zPvDDOEnDM6Y4zCLRczLvMc2AGZMCl1ynLODsmEUqZTkByOyUmM30MoBOgJeXsxa9f0TVK7H6zdl_dlgrFzjekw3iRV8E1isY0-YJmUpjNDzoekcWss0090y76uk9LFLgxu53wbT8lRZeqIZ1s7JR8P9-_zp3Tx-vg8v1ukNlO6S7OKUi6XlhnGc2FsxgxyhYprLQwXYFBgLrktBbOgmVRQcaBKQ5krBQqzKbkadVfB__bDzkXjosW6Ni36PhYchjkg5X5QZ5CBFvtBmXOtAAbwegRt8DEGrIpVGC4W_gpGi80bCi6K8Q0De7kVNdGaugqmtS7uGmQGlPMNdjFiDhF31a3GP3rDjgg</recordid><startdate>19920601</startdate><enddate>19920601</enddate><creator>Jiang, S.</creator><creator>Kececioglu, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19920601</creationdate><title>Maximum likelihood estimates, from censored data, for mixed-Weibull distributions</title><author>Jiang, S. ; Kececioglu, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Data analysis</topic><topic>Data engineering</topic><topic>Exact sciences and technology</topic><topic>Failure analysis</topic><topic>Life estimation</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Statistics</topic><topic>Stress</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, S.</creatorcontrib><creatorcontrib>Kececioglu, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, S.</au><au>Kececioglu, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum likelihood estimates, from censored data, for mixed-Weibull distributions</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>1992-06-01</date><risdate>1992</risdate><volume>41</volume><issue>2</issue><spage>248</spage><epage>255</epage><pages>248-255</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>An algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of the MLE (maximum likelihood estimate) through the EM (expectation and maximization) algorithm, and it is derived for both postmortem and non-postmortem time-to-failure data. The MLEs of the nonpostmortem data are obtained for mixed-Weibull distributions with up to 14 parameters in a five-subpopulation mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore the algorithm should start at several initial guesses of the parameters set. It is shown that the EM algorithm is very efficient. On the average for two-Weibull mixtures with a sample size of 200, the CPU time (on a VAX 8650) is 0.13 s/iteration. The number of iterations depends on the characteristics of the mixture. The number of iterations is small if the subpopulations in the mixture are well separated. Generally, the algorithm is not sensitive to the initial guesses of the parameters.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/24.257791</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 1992-06, Vol.41 (2), p.248-255
issn 0018-9529
1558-1721
language eng
recordid cdi_ieee_primary_257791
source IEEE Electronic Library (IEL) Journals
subjects Data analysis
Data engineering
Exact sciences and technology
Failure analysis
Life estimation
Mathematics
Maximum likelihood estimation
Parameter estimation
Parametric inference
Probability and statistics
Sciences and techniques of general use
Statistical analysis
Statistical distributions
Statistics
Stress
Weibull distribution
title Maximum likelihood estimates, from censored data, for mixed-Weibull distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20likelihood%20estimates,%20from%20censored%20data,%20for%20mixed-Weibull%20distributions&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Jiang,%20S.&rft.date=1992-06-01&rft.volume=41&rft.issue=2&rft.spage=248&rft.epage=255&rft.pages=248-255&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/24.257791&rft_dat=%3Cproquest_ieee_%3E28393984%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-3f0025bc1a1274ac31ae26e62884a249ae4e752cd41c981569f290689d76696e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25728699&rft_id=info:pmid/&rft_ieee_id=257791&rfr_iscdi=true