Loading…
A signal processing neural network resembling the simple cells of the visual cortex
A single-layer neural network that mimics the quadratic phase relationship between the adjacent simple cells in the visual cortex is described. The input nodes of the network use neurons that have multiple output synapses. The resulting system, called the orthonormal neural network, can approximate...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 989 vol.2 |
container_issue | |
container_start_page | 978 |
container_title | |
container_volume | |
creator | Ulug, M.E. |
description | A single-layer neural network that mimics the quadratic phase relationship between the adjacent simple cells in the visual cortex is described. The input nodes of the network use neurons that have multiple output synapses. The resulting system, called the orthonormal neural network, can approximate any L/sub 2/ mapping function between the input and output vectors without using hidden layers or the backpropagation rule. It is also free from the problems of local minima. Because the transfer functions of the input nodes are the terms of the Fourier series, the synaptic link values between the input and output layers represent the frequency spectrum of the signals of the output nodes. As a result by auto-associatively training the network with all the synaptic links and testing it with certain selected ones, it is quite easy to build a nonlinear bandpass filter. Several systems built with this new network are discussed.< > |
doi_str_mv | 10.1109/RNNS.1992.268533 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_268533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>268533</ieee_id><sourcerecordid>268533</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-37c0cf873cc52c9a335d8f57c7133f75ff9523e093837806d2a49313794dd37e3</originalsourceid><addsrcrecordid>eNotj1tLAzEQhQMiqLXv4lP-wK5JZrNJHkvxBqWC7XtZs5MazV5Itl7-vdE6LwPfmTOcQ8gVZyXnzNw8r9ebkhsjSlFrCXBCLpjSDJhmBs7IPKU3lqcCBaI-J5sFTX7fN4GOcbCYku_3tMdDzKTH6XOI7zRiwu4l_CrTK-b7bgxILYaQ6OD-2IdPh-ywQ5zw65KcuiYknP_vGdne3W6XD8Xq6f5xuVgVXpupAGWZdVqBtVJY0wDIVjuprOIATknnjBSAObWGXKBuRVMZ4KBM1bagEGbk-vjWI-JujL5r4vfu2Bp-ANTlTas</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A signal processing neural network resembling the simple cells of the visual cortex</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ulug, M.E.</creator><creatorcontrib>Ulug, M.E.</creatorcontrib><description>A single-layer neural network that mimics the quadratic phase relationship between the adjacent simple cells in the visual cortex is described. The input nodes of the network use neurons that have multiple output synapses. The resulting system, called the orthonormal neural network, can approximate any L/sub 2/ mapping function between the input and output vectors without using hidden layers or the backpropagation rule. It is also free from the problems of local minima. Because the transfer functions of the input nodes are the terms of the Fourier series, the synaptic link values between the input and output layers represent the frequency spectrum of the signals of the output nodes. As a result by auto-associatively training the network with all the synaptic links and testing it with certain selected ones, it is quite easy to build a nonlinear bandpass filter. Several systems built with this new network are discussed.< ></description><identifier>ISBN: 0780308093</identifier><identifier>ISBN: 9780780308091</identifier><identifier>DOI: 10.1109/RNNS.1992.268533</identifier><language>eng</language><publisher>IEEE</publisher><subject>Backpropagation ; Band pass filters ; Fourier series ; Frequency ; Intelligent networks ; Neural networks ; Neurons ; Signal processing ; Testing ; Transfer functions</subject><ispartof>[Proceedings] 1992 RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers, 1992, p.978-989 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/268533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/268533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ulug, M.E.</creatorcontrib><title>A signal processing neural network resembling the simple cells of the visual cortex</title><title>[Proceedings] 1992 RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers</title><addtitle>RNNS</addtitle><description>A single-layer neural network that mimics the quadratic phase relationship between the adjacent simple cells in the visual cortex is described. The input nodes of the network use neurons that have multiple output synapses. The resulting system, called the orthonormal neural network, can approximate any L/sub 2/ mapping function between the input and output vectors without using hidden layers or the backpropagation rule. It is also free from the problems of local minima. Because the transfer functions of the input nodes are the terms of the Fourier series, the synaptic link values between the input and output layers represent the frequency spectrum of the signals of the output nodes. As a result by auto-associatively training the network with all the synaptic links and testing it with certain selected ones, it is quite easy to build a nonlinear bandpass filter. Several systems built with this new network are discussed.< ></description><subject>Backpropagation</subject><subject>Band pass filters</subject><subject>Fourier series</subject><subject>Frequency</subject><subject>Intelligent networks</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Signal processing</subject><subject>Testing</subject><subject>Transfer functions</subject><isbn>0780308093</isbn><isbn>9780780308091</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1tLAzEQhQMiqLXv4lP-wK5JZrNJHkvxBqWC7XtZs5MazV5Itl7-vdE6LwPfmTOcQ8gVZyXnzNw8r9ebkhsjSlFrCXBCLpjSDJhmBs7IPKU3lqcCBaI-J5sFTX7fN4GOcbCYku_3tMdDzKTH6XOI7zRiwu4l_CrTK-b7bgxILYaQ6OD-2IdPh-ywQ5zw65KcuiYknP_vGdne3W6XD8Xq6f5xuVgVXpupAGWZdVqBtVJY0wDIVjuprOIATknnjBSAObWGXKBuRVMZ4KBM1bagEGbk-vjWI-JujL5r4vfu2Bp-ANTlTas</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Ulug, M.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>A signal processing neural network resembling the simple cells of the visual cortex</title><author>Ulug, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-37c0cf873cc52c9a335d8f57c7133f75ff9523e093837806d2a49313794dd37e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Backpropagation</topic><topic>Band pass filters</topic><topic>Fourier series</topic><topic>Frequency</topic><topic>Intelligent networks</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Signal processing</topic><topic>Testing</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Ulug, M.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ulug, M.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A signal processing neural network resembling the simple cells of the visual cortex</atitle><btitle>[Proceedings] 1992 RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers</btitle><stitle>RNNS</stitle><date>1992</date><risdate>1992</risdate><spage>978</spage><epage>989 vol.2</epage><pages>978-989 vol.2</pages><isbn>0780308093</isbn><isbn>9780780308091</isbn><abstract>A single-layer neural network that mimics the quadratic phase relationship between the adjacent simple cells in the visual cortex is described. The input nodes of the network use neurons that have multiple output synapses. The resulting system, called the orthonormal neural network, can approximate any L/sub 2/ mapping function between the input and output vectors without using hidden layers or the backpropagation rule. It is also free from the problems of local minima. Because the transfer functions of the input nodes are the terms of the Fourier series, the synaptic link values between the input and output layers represent the frequency spectrum of the signals of the output nodes. As a result by auto-associatively training the network with all the synaptic links and testing it with certain selected ones, it is quite easy to build a nonlinear bandpass filter. Several systems built with this new network are discussed.< ></abstract><pub>IEEE</pub><doi>10.1109/RNNS.1992.268533</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780308093 |
ispartof | [Proceedings] 1992 RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers, 1992, p.978-989 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_268533 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Backpropagation Band pass filters Fourier series Frequency Intelligent networks Neural networks Neurons Signal processing Testing Transfer functions |
title | A signal processing neural network resembling the simple cells of the visual cortex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20signal%20processing%20neural%20network%20resembling%20the%20simple%20cells%20of%20the%20visual%20cortex&rft.btitle=%5BProceedings%5D%201992%20RNNS/IEEE%20Symposium%20on%20Neuroinformatics%20and%20Neurocomputers&rft.au=Ulug,%20M.E.&rft.date=1992&rft.spage=978&rft.epage=989%20vol.2&rft.pages=978-989%20vol.2&rft.isbn=0780308093&rft.isbn_list=9780780308091&rft_id=info:doi/10.1109/RNNS.1992.268533&rft_dat=%3Cieee_6IE%3E268533%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i89t-37c0cf873cc52c9a335d8f57c7133f75ff9523e093837806d2a49313794dd37e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=268533&rfr_iscdi=true |