Loading…

Electrical properties of epitaxial 3C- and 6H-SiC p-n junction diodes produced side-by-side on 6H-SiC substrates

3C-SiC (/spl beta/-SiC) and 6H-SiC p-n junction diodes have been fabricated in regions of both 3C-SiC and 6H-SiC epitaxial layers which were grown side-by-side on low-tilt-angle 6H-SiC substrates via a chemical vapor deposition (CVD) process. Several runs of diodes exhibiting state-of-the-art electr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 1994-05, Vol.41 (5), p.826-835
Main Authors: Neudeck, P.G., Larkin, D.J., Starr, J.E., Powell, J.A., Salupo, C.S., Matus, L.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:3C-SiC (/spl beta/-SiC) and 6H-SiC p-n junction diodes have been fabricated in regions of both 3C-SiC and 6H-SiC epitaxial layers which were grown side-by-side on low-tilt-angle 6H-SiC substrates via a chemical vapor deposition (CVD) process. Several runs of diodes exhibiting state-of-the-art electrical characteristics were produced, and performance characteristics were measured and compared as a function of doping, temperature, and polytype. The first 3C-SiC diodes which rectify to reverse voltages in excess of 300 V were characterized, representing a six-fold blocking voltage improvement over experimental 3C-SiC diodes produced by previous techniques. When placed under sufficient forward bias, the SC-SiC diodes emit significantly bright green-yellow light while the 6H SiC diodes emit in the blue-violet. The 6H-SiC p-n junction diodes represent the first reported high-quality 6H-SiC devices to be grown by CVD on very low-tilt-angle (
ISSN:0018-9383
1557-9646
DOI:10.1109/16.285038