Loading…
An optimal algorithm for maximum two planar subset problem /spl lsqb/VLSI layout/spl rsqb
The Two Row Maximum Planar Subset (TRMPS) problem asks for finding the maximum planar subset of nets, that can be routed between two rows of terminals an a cell row. This problem was first encountered by Gong, Liu, and Preas (1990). They declared it open, and presented an approximation algorithm for...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 85 |
container_issue | |
container_start_page | 80 |
container_title | |
container_volume | |
creator | Panyam, A. Danda, S. Madhwapathy, S. Sherwani, N. |
description | The Two Row Maximum Planar Subset (TRMPS) problem asks for finding the maximum planar subset of nets, that can be routed between two rows of terminals an a cell row. This problem was first encountered by Gong, Liu, and Preas (1990). They declared it open, and presented an approximation algorithm for this problem. In this paper we show that TRMPS problem can be solved optimally in polynomial time, and we present an O(kn/sup 2/) algorithm to solve this problem. Our algorithm can also be extended to solve the TRMPS problem, in the presence of pre-routed nets, a chosen subset of nets, as well as for planar channel routing. We also apply our technique to obtain an improved approximation algorithm, for over the cell routing in middle terminal model standard cell layouts.< > |
doi_str_mv | 10.1109/GLSV.1994.289991 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_289991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>289991</ieee_id><sourcerecordid>289991</sourcerecordid><originalsourceid>FETCH-ieee_primary_2899913</originalsourceid><addsrcrecordid>eNp9jssKwjAURAMi-OpeXN0fsM3V2jZLEV_gThFcSQpRK0kTkxTt31vUtbMZOGcxQ8gQaYhIWbTe7Y8hMhaHk4wxhi3SoxlmySxBmnZI4NydNolnyDDtktO8BG18obgELq_aFv6m4KItKP4qVKXAPzUYyUtuwVW5Ex6M1bkUCiJnJEj3yKPjbr8FyWtd-Q-0DRyQ9oVLJ4Jf98lotTwsNuNCCHE2tpm09fl7cvpXvgHHgkGI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An optimal algorithm for maximum two planar subset problem /spl lsqb/VLSI layout/spl rsqb</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Panyam, A. ; Danda, S. ; Madhwapathy, S. ; Sherwani, N.</creator><creatorcontrib>Panyam, A. ; Danda, S. ; Madhwapathy, S. ; Sherwani, N.</creatorcontrib><description>The Two Row Maximum Planar Subset (TRMPS) problem asks for finding the maximum planar subset of nets, that can be routed between two rows of terminals an a cell row. This problem was first encountered by Gong, Liu, and Preas (1990). They declared it open, and presented an approximation algorithm for this problem. In this paper we show that TRMPS problem can be solved optimally in polynomial time, and we present an O(kn/sup 2/) algorithm to solve this problem. Our algorithm can also be extended to solve the TRMPS problem, in the presence of pre-routed nets, a chosen subset of nets, as well as for planar channel routing. We also apply our technique to obtain an improved approximation algorithm, for over the cell routing in middle terminal model standard cell layouts.< ></description><identifier>ISBN: 0818656107</identifier><identifier>ISBN: 9780818656101</identifier><identifier>DOI: 10.1109/GLSV.1994.289991</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Algorithm design and analysis ; Approximation algorithms ; Computer science ; Polynomials ; Routing ; Very large scale integration</subject><ispartof>Proceedings of 4th Great Lakes Symposium on VLSI, 1994, p.80-85</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/289991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/289991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Panyam, A.</creatorcontrib><creatorcontrib>Danda, S.</creatorcontrib><creatorcontrib>Madhwapathy, S.</creatorcontrib><creatorcontrib>Sherwani, N.</creatorcontrib><title>An optimal algorithm for maximum two planar subset problem /spl lsqb/VLSI layout/spl rsqb</title><title>Proceedings of 4th Great Lakes Symposium on VLSI</title><addtitle>GLSV</addtitle><description>The Two Row Maximum Planar Subset (TRMPS) problem asks for finding the maximum planar subset of nets, that can be routed between two rows of terminals an a cell row. This problem was first encountered by Gong, Liu, and Preas (1990). They declared it open, and presented an approximation algorithm for this problem. In this paper we show that TRMPS problem can be solved optimally in polynomial time, and we present an O(kn/sup 2/) algorithm to solve this problem. Our algorithm can also be extended to solve the TRMPS problem, in the presence of pre-routed nets, a chosen subset of nets, as well as for planar channel routing. We also apply our technique to obtain an improved approximation algorithm, for over the cell routing in middle terminal model standard cell layouts.< ></description><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Computer science</subject><subject>Polynomials</subject><subject>Routing</subject><subject>Very large scale integration</subject><isbn>0818656107</isbn><isbn>9780818656101</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jssKwjAURAMi-OpeXN0fsM3V2jZLEV_gThFcSQpRK0kTkxTt31vUtbMZOGcxQ8gQaYhIWbTe7Y8hMhaHk4wxhi3SoxlmySxBmnZI4NydNolnyDDtktO8BG18obgELq_aFv6m4KItKP4qVKXAPzUYyUtuwVW5Ex6M1bkUCiJnJEj3yKPjbr8FyWtd-Q-0DRyQ9oVLJ4Jf98lotTwsNuNCCHE2tpm09fl7cvpXvgHHgkGI</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Panyam, A.</creator><creator>Danda, S.</creator><creator>Madhwapathy, S.</creator><creator>Sherwani, N.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>An optimal algorithm for maximum two planar subset problem /spl lsqb/VLSI layout/spl rsqb</title><author>Panyam, A. ; Danda, S. ; Madhwapathy, S. ; Sherwani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_2899913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Computer science</topic><topic>Polynomials</topic><topic>Routing</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Panyam, A.</creatorcontrib><creatorcontrib>Danda, S.</creatorcontrib><creatorcontrib>Madhwapathy, S.</creatorcontrib><creatorcontrib>Sherwani, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panyam, A.</au><au>Danda, S.</au><au>Madhwapathy, S.</au><au>Sherwani, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An optimal algorithm for maximum two planar subset problem /spl lsqb/VLSI layout/spl rsqb</atitle><btitle>Proceedings of 4th Great Lakes Symposium on VLSI</btitle><stitle>GLSV</stitle><date>1994</date><risdate>1994</risdate><spage>80</spage><epage>85</epage><pages>80-85</pages><isbn>0818656107</isbn><isbn>9780818656101</isbn><abstract>The Two Row Maximum Planar Subset (TRMPS) problem asks for finding the maximum planar subset of nets, that can be routed between two rows of terminals an a cell row. This problem was first encountered by Gong, Liu, and Preas (1990). They declared it open, and presented an approximation algorithm for this problem. In this paper we show that TRMPS problem can be solved optimally in polynomial time, and we present an O(kn/sup 2/) algorithm to solve this problem. Our algorithm can also be extended to solve the TRMPS problem, in the presence of pre-routed nets, a chosen subset of nets, as well as for planar channel routing. We also apply our technique to obtain an improved approximation algorithm, for over the cell routing in middle terminal model standard cell layouts.< ></abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/GLSV.1994.289991</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0818656107 |
ispartof | Proceedings of 4th Great Lakes Symposium on VLSI, 1994, p.80-85 |
issn | |
language | eng |
recordid | cdi_ieee_primary_289991 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Approximation algorithms Computer science Polynomials Routing Very large scale integration |
title | An optimal algorithm for maximum two planar subset problem /spl lsqb/VLSI layout/spl rsqb |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20optimal%20algorithm%20for%20maximum%20two%20planar%20subset%20problem%20/spl%20lsqb/VLSI%20layout/spl%20rsqb&rft.btitle=Proceedings%20of%204th%20Great%20Lakes%20Symposium%20on%20VLSI&rft.au=Panyam,%20A.&rft.date=1994&rft.spage=80&rft.epage=85&rft.pages=80-85&rft.isbn=0818656107&rft.isbn_list=9780818656101&rft_id=info:doi/10.1109/GLSV.1994.289991&rft_dat=%3Cieee_6IE%3E289991%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_2899913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=289991&rfr_iscdi=true |