Loading…

A machine-learning apprentice for the completion of repetitive forms

The authors have developed a software environment in which workers can complete repetitive forms, and a machine-learning and prediction system that works within it. The nonintrusive assistant or apprentice provides viable default values for blank fields in a form, saving users up to 87 percent in ke...

Full description

Saved in:
Bibliographic Details
Published in:IEEE expert 1994-02, Vol.9 (1), p.28-33
Main Authors: Hermens, L.A., Shlimmer, J.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-5f291c84efa522c118fe12ce2a3cf60e8208853a4a8caf91482ae392eb38b9373
cites cdi_FETCH-LOGICAL-c281t-5f291c84efa522c118fe12ce2a3cf60e8208853a4a8caf91482ae392eb38b9373
container_end_page 33
container_issue 1
container_start_page 28
container_title IEEE expert
container_volume 9
creator Hermens, L.A.
Shlimmer, J.C.
description The authors have developed a software environment in which workers can complete repetitive forms, and a machine-learning and prediction system that works within it. The nonintrusive assistant or apprentice provides viable default values for blank fields in a form, saving users up to 87 percent in keystroke effort and correctly predicting nearly 90 percent of the form's values. The system and prediction methods are active, yet not intrusive. Default predictions are always displayed, yet the user can override them easily with normal editing commands.< >
doi_str_mv 10.1109/64.295135
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_295135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>295135</ieee_id><sourcerecordid>10_1109_64_295135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-5f291c84efa522c118fe12ce2a3cf60e8208853a4a8caf91482ae392eb38b9373</originalsourceid><addsrcrecordid>eNo9j81LAzEUxIMouFYPXj3l6iE17yW7mxxLtSoUvOh5ScOLjewXySL439u6xdMMzI9hhrFbkEsAaR8qvURbgirPWIGq1sJqWZ-zQhpTCiulvGRXOX9JCVrXVcEeV7xzfh97Ei251Mf-k7txTNRP0RMPQ-LTnrgfurGlKQ49HwJPNB78FL__gC5fs4vg2kw3J12wj83T-_pFbN-eX9errfBoYBJlQAveaAquRPQAJhCgJ3TKh0qSweNK5bQz3gUL2qAjZZF2yuysqtWC3c-9Pg05JwrNmGLn0k8DsjnebyrdzPcP7N3MRiL6507hL8OTVTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A machine-learning apprentice for the completion of repetitive forms</title><source>IEEE Xplore (Online service)</source><creator>Hermens, L.A. ; Shlimmer, J.C.</creator><creatorcontrib>Hermens, L.A. ; Shlimmer, J.C.</creatorcontrib><description>The authors have developed a software environment in which workers can complete repetitive forms, and a machine-learning and prediction system that works within it. The nonintrusive assistant or apprentice provides viable default values for blank fields in a form, saving users up to 87 percent in keystroke effort and correctly predicting nearly 90 percent of the form's values. The system and prediction methods are active, yet not intrusive. Default predictions are always displayed, yet the user can override them easily with normal editing commands.&lt; &gt;</description><identifier>ISSN: 0885-9000</identifier><identifier>EISSN: 2374-9407</identifier><identifier>DOI: 10.1109/64.295135</identifier><identifier>CODEN: IEEXE7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer errors ; Computer networks ; Government ; Image recognition ; Image segmentation ; Machine learning ; Microcomputers ; NASA ; Routing ; Workstations</subject><ispartof>IEEE expert, 1994-02, Vol.9 (1), p.28-33</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-5f291c84efa522c118fe12ce2a3cf60e8208853a4a8caf91482ae392eb38b9373</citedby><cites>FETCH-LOGICAL-c281t-5f291c84efa522c118fe12ce2a3cf60e8208853a4a8caf91482ae392eb38b9373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/295135$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hermens, L.A.</creatorcontrib><creatorcontrib>Shlimmer, J.C.</creatorcontrib><title>A machine-learning apprentice for the completion of repetitive forms</title><title>IEEE expert</title><addtitle>EX-M</addtitle><description>The authors have developed a software environment in which workers can complete repetitive forms, and a machine-learning and prediction system that works within it. The nonintrusive assistant or apprentice provides viable default values for blank fields in a form, saving users up to 87 percent in keystroke effort and correctly predicting nearly 90 percent of the form's values. The system and prediction methods are active, yet not intrusive. Default predictions are always displayed, yet the user can override them easily with normal editing commands.&lt; &gt;</description><subject>Computer errors</subject><subject>Computer networks</subject><subject>Government</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Microcomputers</subject><subject>NASA</subject><subject>Routing</subject><subject>Workstations</subject><issn>0885-9000</issn><issn>2374-9407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9j81LAzEUxIMouFYPXj3l6iE17yW7mxxLtSoUvOh5ScOLjewXySL439u6xdMMzI9hhrFbkEsAaR8qvURbgirPWIGq1sJqWZ-zQhpTCiulvGRXOX9JCVrXVcEeV7xzfh97Ei251Mf-k7txTNRP0RMPQ-LTnrgfurGlKQ49HwJPNB78FL__gC5fs4vg2kw3J12wj83T-_pFbN-eX9errfBoYBJlQAveaAquRPQAJhCgJ3TKh0qSweNK5bQz3gUL2qAjZZF2yuysqtWC3c-9Pg05JwrNmGLn0k8DsjnebyrdzPcP7N3MRiL6507hL8OTVTY</recordid><startdate>19940201</startdate><enddate>19940201</enddate><creator>Hermens, L.A.</creator><creator>Shlimmer, J.C.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940201</creationdate><title>A machine-learning apprentice for the completion of repetitive forms</title><author>Hermens, L.A. ; Shlimmer, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-5f291c84efa522c118fe12ce2a3cf60e8208853a4a8caf91482ae392eb38b9373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Computer errors</topic><topic>Computer networks</topic><topic>Government</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Microcomputers</topic><topic>NASA</topic><topic>Routing</topic><topic>Workstations</topic><toplevel>online_resources</toplevel><creatorcontrib>Hermens, L.A.</creatorcontrib><creatorcontrib>Shlimmer, J.C.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE expert</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermens, L.A.</au><au>Shlimmer, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine-learning apprentice for the completion of repetitive forms</atitle><jtitle>IEEE expert</jtitle><stitle>EX-M</stitle><date>1994-02-01</date><risdate>1994</risdate><volume>9</volume><issue>1</issue><spage>28</spage><epage>33</epage><pages>28-33</pages><issn>0885-9000</issn><eissn>2374-9407</eissn><coden>IEEXE7</coden><abstract>The authors have developed a software environment in which workers can complete repetitive forms, and a machine-learning and prediction system that works within it. The nonintrusive assistant or apprentice provides viable default values for blank fields in a form, saving users up to 87 percent in keystroke effort and correctly predicting nearly 90 percent of the form's values. The system and prediction methods are active, yet not intrusive. Default predictions are always displayed, yet the user can override them easily with normal editing commands.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/64.295135</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-9000
ispartof IEEE expert, 1994-02, Vol.9 (1), p.28-33
issn 0885-9000
2374-9407
language eng
recordid cdi_ieee_primary_295135
source IEEE Xplore (Online service)
subjects Computer errors
Computer networks
Government
Image recognition
Image segmentation
Machine learning
Microcomputers
NASA
Routing
Workstations
title A machine-learning apprentice for the completion of repetitive forms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine-learning%20apprentice%20for%20the%20completion%20of%20repetitive%20forms&rft.jtitle=IEEE%20expert&rft.au=Hermens,%20L.A.&rft.date=1994-02-01&rft.volume=9&rft.issue=1&rft.spage=28&rft.epage=33&rft.pages=28-33&rft.issn=0885-9000&rft.eissn=2374-9407&rft.coden=IEEXE7&rft_id=info:doi/10.1109/64.295135&rft_dat=%3Ccrossref_ieee_%3E10_1109_64_295135%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-5f291c84efa522c118fe12ce2a3cf60e8208853a4a8caf91482ae392eb38b9373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=295135&rfr_iscdi=true