Loading…
Tensile strain dependence of Brillouin frequency shift in silica optical fibers
Brillouin frequency shift in a single-mode optical fiber has been measured as a function of tensile strain. The strain coefficient of normalized Brillouin frequency shift C identical to (dv/sub B//d epsilon )/v/sub B/ is found to be 4.4 for silica fibers. This result shows the potential of Brillouin...
Saved in:
Published in: | IEEE photonics technology letters 1989-05, Vol.1 (5), p.107-108 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Brillouin frequency shift in a single-mode optical fiber has been measured as a function of tensile strain. The strain coefficient of normalized Brillouin frequency shift C identical to (dv/sub B//d epsilon )/v/sub B/ is found to be 4.4 for silica fibers. This result shows the potential of Brillouin spectroscopy to evaluate tensile strain in the fiber with the strain resolution of about 2*10/sup -4/. The origin of the large strain coefficient is discussed.< > |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/68.34756 |