Loading…
An accurate finite element model of the heart for calculating the electric field due to defibrillation
A physiologically accurate heart model is created from a set of magnetic resonance images of a pig heart. Details include the four chambers as well as the superior vena cava (SVC), and the pulmonary artery. A pair of electrodes is introduced into the model in the SVC and the right ventricle. A linea...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A physiologically accurate heart model is created from a set of magnetic resonance images of a pig heart. Details include the four chambers as well as the superior vena cava (SVC), and the pulmonary artery. A pair of electrodes is introduced into the model in the SVC and the right ventricle. A linear tetrahedral grid is generated to simulate a voltage applied across the two electrodes by the finite clement method. This model may be used to design more efficient shock delivery systems and to investigate the level of discretization and detail needed to accurately model the heart for internal defibrillation applications.< > |
---|---|
DOI: | 10.1109/CIC.1993.378505 |