Loading…
The use of fuzzy neural networks for feature/sensor selection
In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numeri...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 614 |
container_issue | |
container_start_page | 607 |
container_title | |
container_volume | |
creator | Ulug, M.E. |
description | In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.< > |
doi_str_mv | 10.1109/MFI.1994.398398 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_398398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>398398</ieee_id><sourcerecordid>398398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-31c708eb9a6a86c146d674d9652d5b7be75d0d463e112e37f24f2bb64e69b5673</originalsourceid><addsrcrecordid>eNotj01Lw0AURQdEUGrWBVfzB5LOm8_MwoUUq4WKm3ZdZjJvMBoTmUmQ9tcbaC8HDndz4RKyBFYBMLt632wrsFZWwtYzN6SwpmYzgjPDzR0pcv5ic6QCkPyePO0_kU4Z6RBpnM7nE-1xSq6bNf4N6TvTOCQa0Y1TwlXGPs81Y4fN2A79A7mNrstYXL0gh83Lfv1W7j5et-vnXdkCk2MpoDGsRm-ddrVuQOqgjQxWKx6UNx6NCixILRCAozCRy8i91xK19UobsSCPl90WEY-_qf1x6XS8fBT_6HxGkQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The use of fuzzy neural networks for feature/sensor selection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ulug, M.E.</creator><creatorcontrib>Ulug, M.E.</creatorcontrib><description>In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.< ></description><identifier>ISBN: 9780780320727</identifier><identifier>ISBN: 0780320727</identifier><identifier>DOI: 10.1109/MFI.1994.398398</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Frequency selective surfaces ; Fuzzy neural networks ; Fuzzy systems ; Intelligent sensors ; Neural networks ; Neurons ; Pattern recognition ; Sensor phenomena and characterization ; Testing</subject><ispartof>Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems, 1994, p.607-614</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/398398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/398398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ulug, M.E.</creatorcontrib><title>The use of fuzzy neural networks for feature/sensor selection</title><title>Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems</title><addtitle>MFI</addtitle><description>In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.< ></description><subject>Computer architecture</subject><subject>Frequency selective surfaces</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy systems</subject><subject>Intelligent sensors</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pattern recognition</subject><subject>Sensor phenomena and characterization</subject><subject>Testing</subject><isbn>9780780320727</isbn><isbn>0780320727</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01Lw0AURQdEUGrWBVfzB5LOm8_MwoUUq4WKm3ZdZjJvMBoTmUmQ9tcbaC8HDndz4RKyBFYBMLt632wrsFZWwtYzN6SwpmYzgjPDzR0pcv5ic6QCkPyePO0_kU4Z6RBpnM7nE-1xSq6bNf4N6TvTOCQa0Y1TwlXGPs81Y4fN2A79A7mNrstYXL0gh83Lfv1W7j5et-vnXdkCk2MpoDGsRm-ddrVuQOqgjQxWKx6UNx6NCixILRCAozCRy8i91xK19UobsSCPl90WEY-_qf1x6XS8fBT_6HxGkQ</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Ulug, M.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>The use of fuzzy neural networks for feature/sensor selection</title><author>Ulug, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-31c708eb9a6a86c146d674d9652d5b7be75d0d463e112e37f24f2bb64e69b5673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Computer architecture</topic><topic>Frequency selective surfaces</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy systems</topic><topic>Intelligent sensors</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pattern recognition</topic><topic>Sensor phenomena and characterization</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Ulug, M.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ulug, M.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The use of fuzzy neural networks for feature/sensor selection</atitle><btitle>Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems</btitle><stitle>MFI</stitle><date>1994</date><risdate>1994</risdate><spage>607</spage><epage>614</epage><pages>607-614</pages><isbn>9780780320727</isbn><isbn>0780320727</isbn><abstract>In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.< ></abstract><pub>IEEE</pub><doi>10.1109/MFI.1994.398398</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780320727 |
ispartof | Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems, 1994, p.607-614 |
issn | |
language | eng |
recordid | cdi_ieee_primary_398398 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer architecture Frequency selective surfaces Fuzzy neural networks Fuzzy systems Intelligent sensors Neural networks Neurons Pattern recognition Sensor phenomena and characterization Testing |
title | The use of fuzzy neural networks for feature/sensor selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20use%20of%20fuzzy%20neural%20networks%20for%20feature/sensor%20selection&rft.btitle=Proceedings%20of%201994%20IEEE%20International%20Conference%20on%20MFI%20'94.%20Multisensor%20Fusion%20and%20Integration%20for%20Intelligent%20Systems&rft.au=Ulug,%20M.E.&rft.date=1994&rft.spage=607&rft.epage=614&rft.pages=607-614&rft.isbn=9780780320727&rft.isbn_list=0780320727&rft_id=info:doi/10.1109/MFI.1994.398398&rft_dat=%3Cieee_6IE%3E398398%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-31c708eb9a6a86c146d674d9652d5b7be75d0d463e112e37f24f2bb64e69b5673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=398398&rfr_iscdi=true |