Loading…

The use of fuzzy neural networks for feature/sensor selection

In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numeri...

Full description

Saved in:
Bibliographic Details
Main Author: Ulug, M.E.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 614
container_issue
container_start_page 607
container_title
container_volume
creator Ulug, M.E.
description In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.< >
doi_str_mv 10.1109/MFI.1994.398398
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_398398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>398398</ieee_id><sourcerecordid>398398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-31c708eb9a6a86c146d674d9652d5b7be75d0d463e112e37f24f2bb64e69b5673</originalsourceid><addsrcrecordid>eNotj01Lw0AURQdEUGrWBVfzB5LOm8_MwoUUq4WKm3ZdZjJvMBoTmUmQ9tcbaC8HDndz4RKyBFYBMLt632wrsFZWwtYzN6SwpmYzgjPDzR0pcv5ic6QCkPyePO0_kU4Z6RBpnM7nE-1xSq6bNf4N6TvTOCQa0Y1TwlXGPs81Y4fN2A79A7mNrstYXL0gh83Lfv1W7j5et-vnXdkCk2MpoDGsRm-ddrVuQOqgjQxWKx6UNx6NCixILRCAozCRy8i91xK19UobsSCPl90WEY-_qf1x6XS8fBT_6HxGkQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The use of fuzzy neural networks for feature/sensor selection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ulug, M.E.</creator><creatorcontrib>Ulug, M.E.</creatorcontrib><description>In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.&lt; &gt;</description><identifier>ISBN: 9780780320727</identifier><identifier>ISBN: 0780320727</identifier><identifier>DOI: 10.1109/MFI.1994.398398</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Frequency selective surfaces ; Fuzzy neural networks ; Fuzzy systems ; Intelligent sensors ; Neural networks ; Neurons ; Pattern recognition ; Sensor phenomena and characterization ; Testing</subject><ispartof>Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems, 1994, p.607-614</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/398398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/398398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ulug, M.E.</creatorcontrib><title>The use of fuzzy neural networks for feature/sensor selection</title><title>Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems</title><addtitle>MFI</addtitle><description>In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.&lt; &gt;</description><subject>Computer architecture</subject><subject>Frequency selective surfaces</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy systems</subject><subject>Intelligent sensors</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pattern recognition</subject><subject>Sensor phenomena and characterization</subject><subject>Testing</subject><isbn>9780780320727</isbn><isbn>0780320727</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01Lw0AURQdEUGrWBVfzB5LOm8_MwoUUq4WKm3ZdZjJvMBoTmUmQ9tcbaC8HDndz4RKyBFYBMLt632wrsFZWwtYzN6SwpmYzgjPDzR0pcv5ic6QCkPyePO0_kU4Z6RBpnM7nE-1xSq6bNf4N6TvTOCQa0Y1TwlXGPs81Y4fN2A79A7mNrstYXL0gh83Lfv1W7j5et-vnXdkCk2MpoDGsRm-ddrVuQOqgjQxWKx6UNx6NCixILRCAozCRy8i91xK19UobsSCPl90WEY-_qf1x6XS8fBT_6HxGkQ</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Ulug, M.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>The use of fuzzy neural networks for feature/sensor selection</title><author>Ulug, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-31c708eb9a6a86c146d674d9652d5b7be75d0d463e112e37f24f2bb64e69b5673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Computer architecture</topic><topic>Frequency selective surfaces</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy systems</topic><topic>Intelligent sensors</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pattern recognition</topic><topic>Sensor phenomena and characterization</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Ulug, M.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ulug, M.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The use of fuzzy neural networks for feature/sensor selection</atitle><btitle>Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems</btitle><stitle>MFI</stitle><date>1994</date><risdate>1994</risdate><spage>607</spage><epage>614</epage><pages>607-614</pages><isbn>9780780320727</isbn><isbn>0780320727</isbn><abstract>In diagnostic and fuzzy pattern recognition applications it is very difficult to find out which features to use to achieve the optimum performance. This paper describes a PC-based feature selection system that solves this problem. The system uses a real-time fuzzy neural network. By using the numerical data about the membership functions and by testing thousands of feature subset combinations, the system searches for a subset that increases the separation between classes. If such a subset exists, its use makes it easier to identify the classes. The use of fewer features also results in smaller array sizes and a faster operation. The results of applying this technique to two different systems are discussed.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/MFI.1994.398398</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780320727
ispartof Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems, 1994, p.607-614
issn
language eng
recordid cdi_ieee_primary_398398
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer architecture
Frequency selective surfaces
Fuzzy neural networks
Fuzzy systems
Intelligent sensors
Neural networks
Neurons
Pattern recognition
Sensor phenomena and characterization
Testing
title The use of fuzzy neural networks for feature/sensor selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20use%20of%20fuzzy%20neural%20networks%20for%20feature/sensor%20selection&rft.btitle=Proceedings%20of%201994%20IEEE%20International%20Conference%20on%20MFI%20'94.%20Multisensor%20Fusion%20and%20Integration%20for%20Intelligent%20Systems&rft.au=Ulug,%20M.E.&rft.date=1994&rft.spage=607&rft.epage=614&rft.pages=607-614&rft.isbn=9780780320727&rft.isbn_list=0780320727&rft_id=info:doi/10.1109/MFI.1994.398398&rft_dat=%3Cieee_6IE%3E398398%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-31c708eb9a6a86c146d674d9652d5b7be75d0d463e112e37f24f2bb64e69b5673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=398398&rfr_iscdi=true