Loading…

Optimal control in estimation problems

A direct problem consists in evaluating the optimal control to apply to an object directed towards its destination point (DP) by minimizing a pre-defined cost functional. An inverse problem can also be considered by estimating the DP of an object directed towards a complex environment when no possib...

Full description

Saved in:
Bibliographic Details
Main Authors: Boulet, V., Druon, E., Duflos, E., Vanheeghe, P., Borne, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2662 vol. 3
container_issue
container_start_page 2658
container_title
container_volume 3
creator Boulet, V.
Druon, E.
Duflos, E.
Vanheeghe, P.
Borne, P.
description A direct problem consists in evaluating the optimal control to apply to an object directed towards its destination point (DP) by minimizing a pre-defined cost functional. An inverse problem can also be considered by estimating the DP of an object directed towards a complex environment when no possibility is given to control it. The control behavior of the object can be simulated by processing its kinematic data. So, the application of optimal control theory to solve this problem is quite unusual: the main contribution of this work is to use the hypothesis of a conventional control law for the object (proportional navigation law) and to compare it to advanced control laws derived from the optimal control theory. Moreover the use of optimal control in DP estimation seems to be a convenient way to detect particular behaviors discriminating the DP among possible ones.< >
doi_str_mv 10.1109/ICSMC.1994.400273
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_400273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>400273</ieee_id><sourcerecordid>400273</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-d5df81b24685259428cb7dcba565f24280442b8ef4616f359681252d82d91bbf3</originalsourceid><addsrcrecordid>eNotTz1rwzAUFIRCQ-of0E6estnVe3qSpbGYfgQSMiSdg2VJoODYxvLSf1-X9Dg47objjrFn4CUAN6-7-nSoSzCGSuIcK7Fimak0XygQ0OhHlqV05QtISoJqzbbHcY63psvboZ-noctjn_v0F81x6PNxGmznb-mJPYSmSz771w37_ng_11_F_vi5q9_2RQROc-GkCxosktISpSHUra1caxupZMDFciK02gdSoIKQRmlAiU6jM2BtEBv2cu-N3vvLOC07pp_L_Yz4BSb-Pgs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal control in estimation problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Boulet, V. ; Druon, E. ; Duflos, E. ; Vanheeghe, P. ; Borne, P.</creator><creatorcontrib>Boulet, V. ; Druon, E. ; Duflos, E. ; Vanheeghe, P. ; Borne, P.</creatorcontrib><description>A direct problem consists in evaluating the optimal control to apply to an object directed towards its destination point (DP) by minimizing a pre-defined cost functional. An inverse problem can also be considered by estimating the DP of an object directed towards a complex environment when no possibility is given to control it. The control behavior of the object can be simulated by processing its kinematic data. So, the application of optimal control theory to solve this problem is quite unusual: the main contribution of this work is to use the hypothesis of a conventional control law for the object (proportional navigation law) and to compare it to advanced control laws derived from the optimal control theory. Moreover the use of optimal control in DP estimation seems to be a convenient way to detect particular behaviors discriminating the DP among possible ones.&lt; &gt;</description><identifier>ISBN: 9780780321298</identifier><identifier>ISBN: 0780321294</identifier><identifier>DOI: 10.1109/ICSMC.1994.400273</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Cost function ; Equations ; Inverse problems ; Kinematics ; Light rail systems ; Navigation ; Optimal control ; Phase detection ; Proportional control</subject><ispartof>Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 1994, Vol.3, p.2658-2662 vol. 3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/400273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/400273$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boulet, V.</creatorcontrib><creatorcontrib>Druon, E.</creatorcontrib><creatorcontrib>Duflos, E.</creatorcontrib><creatorcontrib>Vanheeghe, P.</creatorcontrib><creatorcontrib>Borne, P.</creatorcontrib><title>Optimal control in estimation problems</title><title>Proceedings of IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>A direct problem consists in evaluating the optimal control to apply to an object directed towards its destination point (DP) by minimizing a pre-defined cost functional. An inverse problem can also be considered by estimating the DP of an object directed towards a complex environment when no possibility is given to control it. The control behavior of the object can be simulated by processing its kinematic data. So, the application of optimal control theory to solve this problem is quite unusual: the main contribution of this work is to use the hypothesis of a conventional control law for the object (proportional navigation law) and to compare it to advanced control laws derived from the optimal control theory. Moreover the use of optimal control in DP estimation seems to be a convenient way to detect particular behaviors discriminating the DP among possible ones.&lt; &gt;</description><subject>Acceleration</subject><subject>Cost function</subject><subject>Equations</subject><subject>Inverse problems</subject><subject>Kinematics</subject><subject>Light rail systems</subject><subject>Navigation</subject><subject>Optimal control</subject><subject>Phase detection</subject><subject>Proportional control</subject><isbn>9780780321298</isbn><isbn>0780321294</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotTz1rwzAUFIRCQ-of0E6estnVe3qSpbGYfgQSMiSdg2VJoODYxvLSf1-X9Dg47objjrFn4CUAN6-7-nSoSzCGSuIcK7Fimak0XygQ0OhHlqV05QtISoJqzbbHcY63psvboZ-noctjn_v0F81x6PNxGmznb-mJPYSmSz771w37_ng_11_F_vi5q9_2RQROc-GkCxosktISpSHUra1caxupZMDFciK02gdSoIKQRmlAiU6jM2BtEBv2cu-N3vvLOC07pp_L_Yz4BSb-Pgs</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Boulet, V.</creator><creator>Druon, E.</creator><creator>Duflos, E.</creator><creator>Vanheeghe, P.</creator><creator>Borne, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Optimal control in estimation problems</title><author>Boulet, V. ; Druon, E. ; Duflos, E. ; Vanheeghe, P. ; Borne, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-d5df81b24685259428cb7dcba565f24280442b8ef4616f359681252d82d91bbf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Acceleration</topic><topic>Cost function</topic><topic>Equations</topic><topic>Inverse problems</topic><topic>Kinematics</topic><topic>Light rail systems</topic><topic>Navigation</topic><topic>Optimal control</topic><topic>Phase detection</topic><topic>Proportional control</topic><toplevel>online_resources</toplevel><creatorcontrib>Boulet, V.</creatorcontrib><creatorcontrib>Druon, E.</creatorcontrib><creatorcontrib>Duflos, E.</creatorcontrib><creatorcontrib>Vanheeghe, P.</creatorcontrib><creatorcontrib>Borne, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boulet, V.</au><au>Druon, E.</au><au>Duflos, E.</au><au>Vanheeghe, P.</au><au>Borne, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal control in estimation problems</atitle><btitle>Proceedings of IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>1994</date><risdate>1994</risdate><volume>3</volume><spage>2658</spage><epage>2662 vol. 3</epage><pages>2658-2662 vol. 3</pages><isbn>9780780321298</isbn><isbn>0780321294</isbn><abstract>A direct problem consists in evaluating the optimal control to apply to an object directed towards its destination point (DP) by minimizing a pre-defined cost functional. An inverse problem can also be considered by estimating the DP of an object directed towards a complex environment when no possibility is given to control it. The control behavior of the object can be simulated by processing its kinematic data. So, the application of optimal control theory to solve this problem is quite unusual: the main contribution of this work is to use the hypothesis of a conventional control law for the object (proportional navigation law) and to compare it to advanced control laws derived from the optimal control theory. Moreover the use of optimal control in DP estimation seems to be a convenient way to detect particular behaviors discriminating the DP among possible ones.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.1994.400273</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780321298
ispartof Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 1994, Vol.3, p.2658-2662 vol. 3
issn
language eng
recordid cdi_ieee_primary_400273
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Cost function
Equations
Inverse problems
Kinematics
Light rail systems
Navigation
Optimal control
Phase detection
Proportional control
title Optimal control in estimation problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20control%20in%20estimation%20problems&rft.btitle=Proceedings%20of%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Boulet,%20V.&rft.date=1994&rft.volume=3&rft.spage=2658&rft.epage=2662%20vol.%203&rft.pages=2658-2662%20vol.%203&rft.isbn=9780780321298&rft.isbn_list=0780321294&rft_id=info:doi/10.1109/ICSMC.1994.400273&rft_dat=%3Cieee_6IE%3E400273%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-d5df81b24685259428cb7dcba565f24280442b8ef4616f359681252d82d91bbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=400273&rfr_iscdi=true