Loading…
Inherited Redundancy and Configurability Utilization for Repairing Nanowire Crossbars with Clustered Defects
With the recent development of nanoscale materials and assembly techniques, it is envisioned to build high-density reconfigurable systems which have never been achieved by the photolithography. Various reconfigurable architectures have been proposed based on nanowire crossbar structure as the primit...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 106 |
container_issue | |
container_start_page | 98 |
container_title | |
container_volume | |
creator | Yellambalase, Y. Minsu Choi Yong-Bin Kim |
description | With the recent development of nanoscale materials and assembly techniques, it is envisioned to build high-density reconfigurable systems which have never been achieved by the photolithography. Various reconfigurable architectures have been proposed based on nanowire crossbar structure as the primitive building block. Unfortunately, high-density systems consisting of nanometer-scale elements are likely to have many imperfections and variations; thus, defect-tolerance is considered as one of the most exigent challenges. In this paper, we evaluate three different logic mapping algorithms with defect avoidance to circumvent clustered defective crosspoints in nanowire reconfigurable crossbar architectures. The effectiveness of inherited redundancy and configurability utilization is demonstrated through extensive parametric simulations |
doi_str_mv | 10.1109/DFT.2006.37 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4030920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4030920</ieee_id><sourcerecordid>4030920</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-22f8d1473ef5f3f0aad637efd4e4566978cbbcb1d0a3054002e5e674fae1ca873</originalsourceid><addsrcrecordid>eNotjM1KAzEYAIM_YK09efSSF9j6Jdkk3aNsrRaKgrTgrWQ3X9rImi1JSqlP74LOZS7DEHLPYMoYVI_zxXrKAdRU6Asy4kLrQldKXZJb0KqSXIP6vCIjJiUUUuvyhkxS-oIBUYlKiRHplmGP0We09APtMVgT2jM1wdK6D87vjtE0vvP5TDd58I_Jvg_U9XHID8ZHH3b0zYT-5CPSOvYpNSYmevJ5T-vumDLGYT1Hh21Od-TamS7h5N9jslk8r-vXYvX-sqyfVoVnWuaCczezrNQCnXTCgTFWCY3OllhKpSo9a5umbZgFI0CWABwlKl06g6w1My3G5OHv6xFxe4j-28TztgQBFQfxC-NCW9g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inherited Redundancy and Configurability Utilization for Repairing Nanowire Crossbars with Clustered Defects</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yellambalase, Y. ; Minsu Choi ; Yong-Bin Kim</creator><creatorcontrib>Yellambalase, Y. ; Minsu Choi ; Yong-Bin Kim</creatorcontrib><description>With the recent development of nanoscale materials and assembly techniques, it is envisioned to build high-density reconfigurable systems which have never been achieved by the photolithography. Various reconfigurable architectures have been proposed based on nanowire crossbar structure as the primitive building block. Unfortunately, high-density systems consisting of nanometer-scale elements are likely to have many imperfections and variations; thus, defect-tolerance is considered as one of the most exigent challenges. In this paper, we evaluate three different logic mapping algorithms with defect avoidance to circumvent clustered defective crosspoints in nanowire reconfigurable crossbar architectures. The effectiveness of inherited redundancy and configurability utilization is demonstrated through extensive parametric simulations</description><identifier>ISSN: 1550-5774</identifier><identifier>ISBN: 076952706X</identifier><identifier>ISBN: 9780769527062</identifier><identifier>EISSN: 2377-7966</identifier><identifier>DOI: 10.1109/DFT.2006.37</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly systems ; Circuit testing ; Clustering algorithms ; Computer architecture ; Lithography ; Logic devices ; Nanoscale devices ; Nanostructures ; Reconfigurable logic ; Wires</subject><ispartof>2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2006, p.98-106</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4030920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4030920$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yellambalase, Y.</creatorcontrib><creatorcontrib>Minsu Choi</creatorcontrib><creatorcontrib>Yong-Bin Kim</creatorcontrib><title>Inherited Redundancy and Configurability Utilization for Repairing Nanowire Crossbars with Clustered Defects</title><title>2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems</title><addtitle>DFTVS</addtitle><description>With the recent development of nanoscale materials and assembly techniques, it is envisioned to build high-density reconfigurable systems which have never been achieved by the photolithography. Various reconfigurable architectures have been proposed based on nanowire crossbar structure as the primitive building block. Unfortunately, high-density systems consisting of nanometer-scale elements are likely to have many imperfections and variations; thus, defect-tolerance is considered as one of the most exigent challenges. In this paper, we evaluate three different logic mapping algorithms with defect avoidance to circumvent clustered defective crosspoints in nanowire reconfigurable crossbar architectures. The effectiveness of inherited redundancy and configurability utilization is demonstrated through extensive parametric simulations</description><subject>Assembly systems</subject><subject>Circuit testing</subject><subject>Clustering algorithms</subject><subject>Computer architecture</subject><subject>Lithography</subject><subject>Logic devices</subject><subject>Nanoscale devices</subject><subject>Nanostructures</subject><subject>Reconfigurable logic</subject><subject>Wires</subject><issn>1550-5774</issn><issn>2377-7966</issn><isbn>076952706X</isbn><isbn>9780769527062</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1KAzEYAIM_YK09efSSF9j6Jdkk3aNsrRaKgrTgrWQ3X9rImi1JSqlP74LOZS7DEHLPYMoYVI_zxXrKAdRU6Asy4kLrQldKXZJb0KqSXIP6vCIjJiUUUuvyhkxS-oIBUYlKiRHplmGP0We09APtMVgT2jM1wdK6D87vjtE0vvP5TDd58I_Jvg_U9XHID8ZHH3b0zYT-5CPSOvYpNSYmevJ5T-vumDLGYT1Hh21Od-TamS7h5N9jslk8r-vXYvX-sqyfVoVnWuaCczezrNQCnXTCgTFWCY3OllhKpSo9a5umbZgFI0CWABwlKl06g6w1My3G5OHv6xFxe4j-28TztgQBFQfxC-NCW9g</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Yellambalase, Y.</creator><creator>Minsu Choi</creator><creator>Yong-Bin Kim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>Inherited Redundancy and Configurability Utilization for Repairing Nanowire Crossbars with Clustered Defects</title><author>Yellambalase, Y. ; Minsu Choi ; Yong-Bin Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-22f8d1473ef5f3f0aad637efd4e4566978cbbcb1d0a3054002e5e674fae1ca873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Assembly systems</topic><topic>Circuit testing</topic><topic>Clustering algorithms</topic><topic>Computer architecture</topic><topic>Lithography</topic><topic>Logic devices</topic><topic>Nanoscale devices</topic><topic>Nanostructures</topic><topic>Reconfigurable logic</topic><topic>Wires</topic><toplevel>online_resources</toplevel><creatorcontrib>Yellambalase, Y.</creatorcontrib><creatorcontrib>Minsu Choi</creatorcontrib><creatorcontrib>Yong-Bin Kim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yellambalase, Y.</au><au>Minsu Choi</au><au>Yong-Bin Kim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inherited Redundancy and Configurability Utilization for Repairing Nanowire Crossbars with Clustered Defects</atitle><btitle>2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems</btitle><stitle>DFTVS</stitle><date>2006-10</date><risdate>2006</risdate><spage>98</spage><epage>106</epage><pages>98-106</pages><issn>1550-5774</issn><eissn>2377-7966</eissn><isbn>076952706X</isbn><isbn>9780769527062</isbn><abstract>With the recent development of nanoscale materials and assembly techniques, it is envisioned to build high-density reconfigurable systems which have never been achieved by the photolithography. Various reconfigurable architectures have been proposed based on nanowire crossbar structure as the primitive building block. Unfortunately, high-density systems consisting of nanometer-scale elements are likely to have many imperfections and variations; thus, defect-tolerance is considered as one of the most exigent challenges. In this paper, we evaluate three different logic mapping algorithms with defect avoidance to circumvent clustered defective crosspoints in nanowire reconfigurable crossbar architectures. The effectiveness of inherited redundancy and configurability utilization is demonstrated through extensive parametric simulations</abstract><pub>IEEE</pub><doi>10.1109/DFT.2006.37</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5774 |
ispartof | 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2006, p.98-106 |
issn | 1550-5774 2377-7966 |
language | eng |
recordid | cdi_ieee_primary_4030920 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Assembly systems Circuit testing Clustering algorithms Computer architecture Lithography Logic devices Nanoscale devices Nanostructures Reconfigurable logic Wires |
title | Inherited Redundancy and Configurability Utilization for Repairing Nanowire Crossbars with Clustered Defects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inherited%20Redundancy%20and%20Configurability%20Utilization%20for%20Repairing%20Nanowire%20Crossbars%20with%20Clustered%20Defects&rft.btitle=2006%2021st%20IEEE%20International%20Symposium%20on%20Defect%20and%20Fault%20Tolerance%20in%20VLSI%20Systems&rft.au=Yellambalase,%20Y.&rft.date=2006-10&rft.spage=98&rft.epage=106&rft.pages=98-106&rft.issn=1550-5774&rft.eissn=2377-7966&rft.isbn=076952706X&rft.isbn_list=9780769527062&rft_id=info:doi/10.1109/DFT.2006.37&rft_dat=%3Cieee_6IE%3E4030920%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-22f8d1473ef5f3f0aad637efd4e4566978cbbcb1d0a3054002e5e674fae1ca873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4030920&rfr_iscdi=true |