Loading…

Robust Analog/RF Circuit Design With Projection-Based Performance Modeling

In this paper, a robust analog design (ROAD) tool for post-tuning (i.e., locally optimizing) analog/RF circuits is proposed. Starting from an initial design derived from hand analysis or analog circuit optimization based on simplified models, ROAD extracts accurate performance models via transistor-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 2007-01, Vol.26 (1), p.2-15
Main Authors: Xin Li, Gopalakrishnan, P., Yang Xu, Pileggi, L.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a robust analog design (ROAD) tool for post-tuning (i.e., locally optimizing) analog/RF circuits is proposed. Starting from an initial design derived from hand analysis or analog circuit optimization based on simplified models, ROAD extracts accurate performance models via transistor-level simulation and iteratively improves the circuit performance by a sequence of geometric programming steps. Importantly, ROAD sets up all design constraints to include large-scale process and environmental variations, thereby facilitating the tradeoff between yield and performance. A crucial component of ROAD is a novel projection-based scheme for quadratic (both polynomial and posynomial) performance modeling, which allows our approach to scale well to large problem sizes. A key feature of this projection-based scheme is a new implicit power iteration algorithm to find the optimal projection space and extract the unknown model coefficients with robust convergence. The efficacy of ROAD is demonstrated on several circuit examples
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2006.882513