Loading…
Robust Analog/RF Circuit Design With Projection-Based Performance Modeling
In this paper, a robust analog design (ROAD) tool for post-tuning (i.e., locally optimizing) analog/RF circuits is proposed. Starting from an initial design derived from hand analysis or analog circuit optimization based on simplified models, ROAD extracts accurate performance models via transistor-...
Saved in:
Published in: | IEEE transactions on computer-aided design of integrated circuits and systems 2007-01, Vol.26 (1), p.2-15 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a robust analog design (ROAD) tool for post-tuning (i.e., locally optimizing) analog/RF circuits is proposed. Starting from an initial design derived from hand analysis or analog circuit optimization based on simplified models, ROAD extracts accurate performance models via transistor-level simulation and iteratively improves the circuit performance by a sequence of geometric programming steps. Importantly, ROAD sets up all design constraints to include large-scale process and environmental variations, thereby facilitating the tradeoff between yield and performance. A crucial component of ROAD is a novel projection-based scheme for quadratic (both polynomial and posynomial) performance modeling, which allows our approach to scale well to large problem sizes. A key feature of this projection-based scheme is a new implicit power iteration algorithm to find the optimal projection space and extract the unknown model coefficients with robust convergence. The efficacy of ROAD is demonstrated on several circuit examples |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/TCAD.2006.882513 |