Loading…
FPGA implementation of a fuzzy controller for automobile DC-DC converters
The design of synchronous multiphase DC-DC converters for automobile applications is now a very active field, because the automotive industry forecast that future power demands inside a car will oscillate between 2.5 kW and 3.5kW, keeping a dual system of 42/14V batteries. The design of controllers...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of synchronous multiphase DC-DC converters for automobile applications is now a very active field, because the automotive industry forecast that future power demands inside a car will oscillate between 2.5 kW and 3.5kW, keeping a dual system of 42/14V batteries. The design of controllers for the optimal behavior of such converters is a very delicate task. In this paper, an optimized fuzzy control algorithm has been developed to control a synchronous multiphase converter of 1.6kW. First, the fuzzy control algorithm is designed and verified, together with a non linear model of the converter power stage, by means of Matlab and Simulink. Then, the fuzzy controller hardware is developed through Xilinx System Generator for Simulink, and implemented in a Spartan 3 FPGA to achieve a real-time controller |
---|---|
DOI: | 10.1109/FPT.2006.270317 |