Loading…
The PDD Framework for Detecting Categories of Peculiar Data
Peculiar data are objects that are relatively few in number and significantly different from the other objects in a data set. In this paper, we propose the PDD framework for detecting multiple categories of peculiar data. This framework provides an extensible set of perspectives for viewing data, cu...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 571 |
container_issue | |
container_start_page | 562 |
container_title | |
container_volume | |
creator | Shrestha, M. Hamilton, H.J. Yiyu Yao Konkel, K. Liqiang Geng |
description | Peculiar data are objects that are relatively few in number and significantly different from the other objects in a data set. In this paper, we propose the PDD framework for detecting multiple categories of peculiar data. This framework provides an extensible set of perspectives for viewing data, currently including viewing data as a set of records, attributes, frequencies, intervals, sequences, or sequences of changes. By using these six views of the data, multiple categories of peculiar data can be detected to reveal different aspects of the data. For each view, the framework provides an extensible set of peculiarity measures to detect outliers and other kinds of peculiar data. The PDD framework has been implemented for Oracle and Access. Experiments are reported for data sets concerning Regina weather and NHL hockey. |
doi_str_mv | 10.1109/ICDM.2006.159 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4053082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4053082</ieee_id><sourcerecordid>4053082</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b4d14bf7aee8e3f6f98696c61ff592002415bd62c4db507a5aa099943671645f3</originalsourceid><addsrcrecordid>eNotjrtOwzAUQC0eEqV0ZGLxDyRcv65tMaGkhUpFdChz5STXxdAS5AQh_p5KMJ3l6Ogwdi2gFAL87bKqn0oJgKUw_oRNpLK6cNrhKZt568CiN9KCsGdsIoyBQluHF-xyGN4AFKKCCbvbvBJf1zVf5HCg7z6_89hnXtNI7Zg-drwKI-36nGjgfeRrar_2KRyFMIYrdh7DfqDZP6fsZTHfVI_F6vlhWd2viiSsGYtGd0I30QYiRypi9A49tihiNP64L7UwTYey1V1jwAYTAnjvtUIrUJuopuzmr5uIaPuZ0yHkn60Go8BJ9QuUd0cz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The PDD Framework for Detecting Categories of Peculiar Data</title><source>IEEE Xplore All Conference Series</source><creator>Shrestha, M. ; Hamilton, H.J. ; Yiyu Yao ; Konkel, K. ; Liqiang Geng</creator><creatorcontrib>Shrestha, M. ; Hamilton, H.J. ; Yiyu Yao ; Konkel, K. ; Liqiang Geng</creatorcontrib><description>Peculiar data are objects that are relatively few in number and significantly different from the other objects in a data set. In this paper, we propose the PDD framework for detecting multiple categories of peculiar data. This framework provides an extensible set of perspectives for viewing data, currently including viewing data as a set of records, attributes, frequencies, intervals, sequences, or sequences of changes. By using these six views of the data, multiple categories of peculiar data can be detected to reveal different aspects of the data. For each view, the framework provides an extensible set of peculiarity measures to detect outliers and other kinds of peculiar data. The PDD framework has been implemented for Oracle and Access. Experiments are reported for data sets concerning Regina weather and NHL hockey.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 9780769527017</identifier><identifier>ISBN: 0769527019</identifier><identifier>EISSN: 2374-8486</identifier><identifier>DOI: 10.1109/ICDM.2006.159</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cancer ; Cleaning ; Computer science ; Density measurement ; Event detection ; Frequency ; Intrusion detection ; Medical diagnosis ; Object detection</subject><ispartof>Sixth International Conference on Data Mining (ICDM'06), 2006, p.562-571</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4053082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4053082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shrestha, M.</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Yiyu Yao</creatorcontrib><creatorcontrib>Konkel, K.</creatorcontrib><creatorcontrib>Liqiang Geng</creatorcontrib><title>The PDD Framework for Detecting Categories of Peculiar Data</title><title>Sixth International Conference on Data Mining (ICDM'06)</title><addtitle>ICDM</addtitle><description>Peculiar data are objects that are relatively few in number and significantly different from the other objects in a data set. In this paper, we propose the PDD framework for detecting multiple categories of peculiar data. This framework provides an extensible set of perspectives for viewing data, currently including viewing data as a set of records, attributes, frequencies, intervals, sequences, or sequences of changes. By using these six views of the data, multiple categories of peculiar data can be detected to reveal different aspects of the data. For each view, the framework provides an extensible set of peculiarity measures to detect outliers and other kinds of peculiar data. The PDD framework has been implemented for Oracle and Access. Experiments are reported for data sets concerning Regina weather and NHL hockey.</description><subject>Cancer</subject><subject>Cleaning</subject><subject>Computer science</subject><subject>Density measurement</subject><subject>Event detection</subject><subject>Frequency</subject><subject>Intrusion detection</subject><subject>Medical diagnosis</subject><subject>Object detection</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>9780769527017</isbn><isbn>0769527019</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjrtOwzAUQC0eEqV0ZGLxDyRcv65tMaGkhUpFdChz5STXxdAS5AQh_p5KMJ3l6Ogwdi2gFAL87bKqn0oJgKUw_oRNpLK6cNrhKZt568CiN9KCsGdsIoyBQluHF-xyGN4AFKKCCbvbvBJf1zVf5HCg7z6_89hnXtNI7Zg-drwKI-36nGjgfeRrar_2KRyFMIYrdh7DfqDZP6fsZTHfVI_F6vlhWd2viiSsGYtGd0I30QYiRypi9A49tihiNP64L7UwTYey1V1jwAYTAnjvtUIrUJuopuzmr5uIaPuZ0yHkn60Go8BJ9QuUd0cz</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Shrestha, M.</creator><creator>Hamilton, H.J.</creator><creator>Yiyu Yao</creator><creator>Konkel, K.</creator><creator>Liqiang Geng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>The PDD Framework for Detecting Categories of Peculiar Data</title><author>Shrestha, M. ; Hamilton, H.J. ; Yiyu Yao ; Konkel, K. ; Liqiang Geng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b4d14bf7aee8e3f6f98696c61ff592002415bd62c4db507a5aa099943671645f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cancer</topic><topic>Cleaning</topic><topic>Computer science</topic><topic>Density measurement</topic><topic>Event detection</topic><topic>Frequency</topic><topic>Intrusion detection</topic><topic>Medical diagnosis</topic><topic>Object detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Shrestha, M.</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Yiyu Yao</creatorcontrib><creatorcontrib>Konkel, K.</creatorcontrib><creatorcontrib>Liqiang Geng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shrestha, M.</au><au>Hamilton, H.J.</au><au>Yiyu Yao</au><au>Konkel, K.</au><au>Liqiang Geng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The PDD Framework for Detecting Categories of Peculiar Data</atitle><btitle>Sixth International Conference on Data Mining (ICDM'06)</btitle><stitle>ICDM</stitle><date>2006-12</date><risdate>2006</risdate><spage>562</spage><epage>571</epage><pages>562-571</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>9780769527017</isbn><isbn>0769527019</isbn><abstract>Peculiar data are objects that are relatively few in number and significantly different from the other objects in a data set. In this paper, we propose the PDD framework for detecting multiple categories of peculiar data. This framework provides an extensible set of perspectives for viewing data, currently including viewing data as a set of records, attributes, frequencies, intervals, sequences, or sequences of changes. By using these six views of the data, multiple categories of peculiar data can be detected to reveal different aspects of the data. For each view, the framework provides an extensible set of peculiarity measures to detect outliers and other kinds of peculiar data. The PDD framework has been implemented for Oracle and Access. Experiments are reported for data sets concerning Regina weather and NHL hockey.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2006.159</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-4786 |
ispartof | Sixth International Conference on Data Mining (ICDM'06), 2006, p.562-571 |
issn | 1550-4786 2374-8486 |
language | eng |
recordid | cdi_ieee_primary_4053082 |
source | IEEE Xplore All Conference Series |
subjects | Cancer Cleaning Computer science Density measurement Event detection Frequency Intrusion detection Medical diagnosis Object detection |
title | The PDD Framework for Detecting Categories of Peculiar Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20PDD%20Framework%20for%20Detecting%20Categories%20of%20Peculiar%20Data&rft.btitle=Sixth%20International%20Conference%20on%20Data%20Mining%20(ICDM'06)&rft.au=Shrestha,%20M.&rft.date=2006-12&rft.spage=562&rft.epage=571&rft.pages=562-571&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=9780769527017&rft.isbn_list=0769527019&rft_id=info:doi/10.1109/ICDM.2006.159&rft_dat=%3Cieee_CHZPO%3E4053082%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b4d14bf7aee8e3f6f98696c61ff592002415bd62c4db507a5aa099943671645f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4053082&rfr_iscdi=true |