Loading…
The linearization of a Composite Large-scale Nonlinear System
This paper studies the linearization of a similar large-scale nonlinear control system using differential geometry methods. The large-scale nonlinear control system consists of N n-dimensional subsystems which have similar characteristic and relation. It is shown that the large-scale nonlinear contr...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 182 |
container_issue | |
container_start_page | 179 |
container_title | |
container_volume | |
creator | Han Zhi-tao Jing Yuanwei Duan Xiaodong Zhang Siying |
description | This paper studies the linearization of a similar large-scale nonlinear control system using differential geometry methods. The large-scale nonlinear control system consists of N n-dimensional subsystems which have similar characteristic and relation. It is shown that the large-scale nonlinear control system is linearizable at the neighbour of one point if and only if each subsystem has m output functions and the sum of the corresponding characteristic index is equal to the dimension of the subspace n and the index matrix has rank m. |
doi_str_mv | 10.1109/CHICC.2006.280856 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4060404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4060404</ieee_id><sourcerecordid>4060404</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-504766701144b57b03de4f80d7c98cdc0ea339ec93200309ae2f173d4e5e7c1a3</originalsourceid><addsrcrecordid>eNotj81Kw0AURsc_sNY8gLiZF0i9d2Yyd2bhQkK1haALsy_T5EZH8lOSbOrTW6irjwOHA58QDwgrRPBP-Wab5ysFYFfKgcvshbgjf0LrnTOXYqHQYqq8oiuReHLkEIgcKHUtFui1SZGsuxXJNP0AAHpLRqmFeC6_Wbax5zDG3zDHoZdDI4PMh-4wTHFmWYTxi9OpCi3L96E_u_LzOM3c3YubJrQTJ_-7FOXrusw3afHxts1fijR6mNMMDFlLgGjMPqM96JpN46CmyruqroCD1p4rr0__NPjAqkHSteGMqcKgl-LxnI3MvDuMsQvjcWfAggGj_wBc2EwT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The linearization of a Composite Large-scale Nonlinear System</title><source>IEEE Xplore All Conference Series</source><creator>Han Zhi-tao ; Jing Yuanwei ; Duan Xiaodong ; Zhang Siying</creator><creatorcontrib>Han Zhi-tao ; Jing Yuanwei ; Duan Xiaodong ; Zhang Siying</creatorcontrib><description>This paper studies the linearization of a similar large-scale nonlinear control system using differential geometry methods. The large-scale nonlinear control system consists of N n-dimensional subsystems which have similar characteristic and relation. It is shown that the large-scale nonlinear control system is linearizable at the neighbour of one point if and only if each subsystem has m output functions and the sum of the corresponding characteristic index is equal to the dimension of the subspace n and the index matrix has rank m.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 9787810778022</identifier><identifier>ISBN: 7810778021</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 7900669884</identifier><identifier>EISBN: 9787900669889</identifier><identifier>DOI: 10.1109/CHICC.2006.280856</identifier><language>eng</language><publisher>IEEE</publisher><subject>Characteristic index ; Composite Large-scale nonlinear control system ; Computational geometry ; Control systems ; Controllability ; Educational institutions ; Feedback ; Information science ; Large-scale systems ; Linearization ; Nonlinear control systems ; Nonlinear systems ; Observability</subject><ispartof>2006 Chinese Control Conference, 2006, p.179-182</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4060404$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54542,54907,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4060404$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han Zhi-tao</creatorcontrib><creatorcontrib>Jing Yuanwei</creatorcontrib><creatorcontrib>Duan Xiaodong</creatorcontrib><creatorcontrib>Zhang Siying</creatorcontrib><title>The linearization of a Composite Large-scale Nonlinear System</title><title>2006 Chinese Control Conference</title><addtitle>CHICC</addtitle><description>This paper studies the linearization of a similar large-scale nonlinear control system using differential geometry methods. The large-scale nonlinear control system consists of N n-dimensional subsystems which have similar characteristic and relation. It is shown that the large-scale nonlinear control system is linearizable at the neighbour of one point if and only if each subsystem has m output functions and the sum of the corresponding characteristic index is equal to the dimension of the subspace n and the index matrix has rank m.</description><subject>Characteristic index</subject><subject>Composite Large-scale nonlinear control system</subject><subject>Computational geometry</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Educational institutions</subject><subject>Feedback</subject><subject>Information science</subject><subject>Large-scale systems</subject><subject>Linearization</subject><subject>Nonlinear control systems</subject><subject>Nonlinear systems</subject><subject>Observability</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>9787810778022</isbn><isbn>7810778021</isbn><isbn>7900669884</isbn><isbn>9787900669889</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURsc_sNY8gLiZF0i9d2Yyd2bhQkK1haALsy_T5EZH8lOSbOrTW6irjwOHA58QDwgrRPBP-Wab5ysFYFfKgcvshbgjf0LrnTOXYqHQYqq8oiuReHLkEIgcKHUtFui1SZGsuxXJNP0AAHpLRqmFeC6_Wbax5zDG3zDHoZdDI4PMh-4wTHFmWYTxi9OpCi3L96E_u_LzOM3c3YubJrQTJ_-7FOXrusw3afHxts1fijR6mNMMDFlLgGjMPqM96JpN46CmyruqroCD1p4rr0__NPjAqkHSteGMqcKgl-LxnI3MvDuMsQvjcWfAggGj_wBc2EwT</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Han Zhi-tao</creator><creator>Jing Yuanwei</creator><creator>Duan Xiaodong</creator><creator>Zhang Siying</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200608</creationdate><title>The linearization of a Composite Large-scale Nonlinear System</title><author>Han Zhi-tao ; Jing Yuanwei ; Duan Xiaodong ; Zhang Siying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-504766701144b57b03de4f80d7c98cdc0ea339ec93200309ae2f173d4e5e7c1a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Characteristic index</topic><topic>Composite Large-scale nonlinear control system</topic><topic>Computational geometry</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Educational institutions</topic><topic>Feedback</topic><topic>Information science</topic><topic>Large-scale systems</topic><topic>Linearization</topic><topic>Nonlinear control systems</topic><topic>Nonlinear systems</topic><topic>Observability</topic><toplevel>online_resources</toplevel><creatorcontrib>Han Zhi-tao</creatorcontrib><creatorcontrib>Jing Yuanwei</creatorcontrib><creatorcontrib>Duan Xiaodong</creatorcontrib><creatorcontrib>Zhang Siying</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han Zhi-tao</au><au>Jing Yuanwei</au><au>Duan Xiaodong</au><au>Zhang Siying</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The linearization of a Composite Large-scale Nonlinear System</atitle><btitle>2006 Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2006-08</date><risdate>2006</risdate><spage>179</spage><epage>182</epage><pages>179-182</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>9787810778022</isbn><isbn>7810778021</isbn><eisbn>7900669884</eisbn><eisbn>9787900669889</eisbn><abstract>This paper studies the linearization of a similar large-scale nonlinear control system using differential geometry methods. The large-scale nonlinear control system consists of N n-dimensional subsystems which have similar characteristic and relation. It is shown that the large-scale nonlinear control system is linearizable at the neighbour of one point if and only if each subsystem has m output functions and the sum of the corresponding characteristic index is equal to the dimension of the subspace n and the index matrix has rank m.</abstract><pub>IEEE</pub><doi>10.1109/CHICC.2006.280856</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1934-1768 |
ispartof | 2006 Chinese Control Conference, 2006, p.179-182 |
issn | 1934-1768 2161-2927 |
language | eng |
recordid | cdi_ieee_primary_4060404 |
source | IEEE Xplore All Conference Series |
subjects | Characteristic index Composite Large-scale nonlinear control system Computational geometry Control systems Controllability Educational institutions Feedback Information science Large-scale systems Linearization Nonlinear control systems Nonlinear systems Observability |
title | The linearization of a Composite Large-scale Nonlinear System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20linearization%20of%20a%20Composite%20Large-scale%20Nonlinear%20System&rft.btitle=2006%20Chinese%20Control%20Conference&rft.au=Han%20Zhi-tao&rft.date=2006-08&rft.spage=179&rft.epage=182&rft.pages=179-182&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=9787810778022&rft.isbn_list=7810778021&rft_id=info:doi/10.1109/CHICC.2006.280856&rft.eisbn=7900669884&rft.eisbn_list=9787900669889&rft_dat=%3Cieee_CHZPO%3E4060404%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-504766701144b57b03de4f80d7c98cdc0ea339ec93200309ae2f173d4e5e7c1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4060404&rfr_iscdi=true |