Loading…

Data Mining for Building Rule-based Fault Diagnosis Systems

This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of ru...

Full description

Saved in:
Bibliographic Details
Main Author: Dianhui Wang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2211
container_issue
container_start_page 2206
container_title
container_volume
creator Dianhui Wang
description This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of rule generation and use, and a regularization model embedding some information on recognition rate, coverage rate and generalization capability for rule optimization. A case study is carried out by an engine diagnostics to illustrate effectiveness of our methodology.
doi_str_mv 10.1109/CHICC.2006.280946
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4060494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4060494</ieee_id><sourcerecordid>4060494</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a4cb7dfbce4f62f78bd8de4873281e6fa1db2836482d2467d24233fc79954ce23</originalsourceid><addsrcrecordid>eNotjMtOAjEUQOsrcUQ-wLiZHxi8vb32tnGlgwgJxkTZk860JTUDGDos-HswujknZ3OEuJMwkhLsQz2d1fUIAfQIDVjSZ-KG7Sm1NYbORYFSywot8oUYWjZsJDAbQLwUhbSKKsnaXIthzt8AIK1mQizE09j1rnxPm7RZlXG7K1_2qfO_8bnvQtW4HHw5cfuuL8fJrTbbnHL5dch9WOdbcRVdl8Pw3wOxmLwu6mk1_3ib1c_zKlnoK0dtwz42baCoMbJpvPGBDCs0MujopG_QKE0GPZLmE1Cp2LK1j9QGVANx_7dNIYTlzy6t3e6wJNBAltQRvSVLqw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data Mining for Building Rule-based Fault Diagnosis Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dianhui Wang</creator><creatorcontrib>Dianhui Wang</creatorcontrib><description>This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of rule generation and use, and a regularization model embedding some information on recognition rate, coverage rate and generalization capability for rule optimization. A case study is carried out by an engine diagnostics to illustrate effectiveness of our methodology.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 9787810778022</identifier><identifier>ISBN: 7810778021</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 7900669884</identifier><identifier>EISBN: 9787900669889</identifier><identifier>DOI: 10.1109/CHICC.2006.280946</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Control systems ; Data engineering ; Data mining ; Diagnostic expert systems ; Electronic mail ; Engines ; Fault diagnosis ; multilayer classifiers ; Nonhomogeneous media ; Power engineering and energy ; rule-based expert systems</subject><ispartof>2006 Chinese Control Conference, 2006, p.2206-2211</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4060494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4060494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dianhui Wang</creatorcontrib><title>Data Mining for Building Rule-based Fault Diagnosis Systems</title><title>2006 Chinese Control Conference</title><addtitle>CHICC</addtitle><description>This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of rule generation and use, and a regularization model embedding some information on recognition rate, coverage rate and generalization capability for rule optimization. A case study is carried out by an engine diagnostics to illustrate effectiveness of our methodology.</description><subject>Computer science</subject><subject>Control systems</subject><subject>Data engineering</subject><subject>Data mining</subject><subject>Diagnostic expert systems</subject><subject>Electronic mail</subject><subject>Engines</subject><subject>Fault diagnosis</subject><subject>multilayer classifiers</subject><subject>Nonhomogeneous media</subject><subject>Power engineering and energy</subject><subject>rule-based expert systems</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>9787810778022</isbn><isbn>7810778021</isbn><isbn>7900669884</isbn><isbn>9787900669889</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtOAjEUQOsrcUQ-wLiZHxi8vb32tnGlgwgJxkTZk860JTUDGDos-HswujknZ3OEuJMwkhLsQz2d1fUIAfQIDVjSZ-KG7Sm1NYbORYFSywot8oUYWjZsJDAbQLwUhbSKKsnaXIthzt8AIK1mQizE09j1rnxPm7RZlXG7K1_2qfO_8bnvQtW4HHw5cfuuL8fJrTbbnHL5dch9WOdbcRVdl8Pw3wOxmLwu6mk1_3ib1c_zKlnoK0dtwz42baCoMbJpvPGBDCs0MujopG_QKE0GPZLmE1Cp2LK1j9QGVANx_7dNIYTlzy6t3e6wJNBAltQRvSVLqw</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Dianhui Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200608</creationdate><title>Data Mining for Building Rule-based Fault Diagnosis Systems</title><author>Dianhui Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a4cb7dfbce4f62f78bd8de4873281e6fa1db2836482d2467d24233fc79954ce23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer science</topic><topic>Control systems</topic><topic>Data engineering</topic><topic>Data mining</topic><topic>Diagnostic expert systems</topic><topic>Electronic mail</topic><topic>Engines</topic><topic>Fault diagnosis</topic><topic>multilayer classifiers</topic><topic>Nonhomogeneous media</topic><topic>Power engineering and energy</topic><topic>rule-based expert systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Dianhui Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dianhui Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data Mining for Building Rule-based Fault Diagnosis Systems</atitle><btitle>2006 Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2006-08</date><risdate>2006</risdate><spage>2206</spage><epage>2211</epage><pages>2206-2211</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>9787810778022</isbn><isbn>7810778021</isbn><eisbn>7900669884</eisbn><eisbn>9787900669889</eisbn><abstract>This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of rule generation and use, and a regularization model embedding some information on recognition rate, coverage rate and generalization capability for rule optimization. A case study is carried out by an engine diagnostics to illustrate effectiveness of our methodology.</abstract><pub>IEEE</pub><doi>10.1109/CHICC.2006.280946</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1934-1768
ispartof 2006 Chinese Control Conference, 2006, p.2206-2211
issn 1934-1768
2161-2927
language eng
recordid cdi_ieee_primary_4060494
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Control systems
Data engineering
Data mining
Diagnostic expert systems
Electronic mail
Engines
Fault diagnosis
multilayer classifiers
Nonhomogeneous media
Power engineering and energy
rule-based expert systems
title Data Mining for Building Rule-based Fault Diagnosis Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20Mining%20for%20Building%20Rule-based%20Fault%20Diagnosis%20Systems&rft.btitle=2006%20Chinese%20Control%20Conference&rft.au=Dianhui%20Wang&rft.date=2006-08&rft.spage=2206&rft.epage=2211&rft.pages=2206-2211&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=9787810778022&rft.isbn_list=7810778021&rft_id=info:doi/10.1109/CHICC.2006.280946&rft.eisbn=7900669884&rft.eisbn_list=9787900669889&rft_dat=%3Cieee_6IE%3E4060494%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-a4cb7dfbce4f62f78bd8de4873281e6fa1db2836482d2467d24233fc79954ce23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4060494&rfr_iscdi=true