Loading…
Data Mining for Building Rule-based Fault Diagnosis Systems
This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of ru...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2211 |
container_issue | |
container_start_page | 2206 |
container_title | |
container_volume | |
creator | Dianhui Wang |
description | This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of rule generation and use, and a regularization model embedding some information on recognition rate, coverage rate and generalization capability for rule optimization. A case study is carried out by an engine diagnostics to illustrate effectiveness of our methodology. |
doi_str_mv | 10.1109/CHICC.2006.280946 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4060494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4060494</ieee_id><sourcerecordid>4060494</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a4cb7dfbce4f62f78bd8de4873281e6fa1db2836482d2467d24233fc79954ce23</originalsourceid><addsrcrecordid>eNotjMtOAjEUQOsrcUQ-wLiZHxi8vb32tnGlgwgJxkTZk860JTUDGDos-HswujknZ3OEuJMwkhLsQz2d1fUIAfQIDVjSZ-KG7Sm1NYbORYFSywot8oUYWjZsJDAbQLwUhbSKKsnaXIthzt8AIK1mQizE09j1rnxPm7RZlXG7K1_2qfO_8bnvQtW4HHw5cfuuL8fJrTbbnHL5dch9WOdbcRVdl8Pw3wOxmLwu6mk1_3ib1c_zKlnoK0dtwz42baCoMbJpvPGBDCs0MujopG_QKE0GPZLmE1Cp2LK1j9QGVANx_7dNIYTlzy6t3e6wJNBAltQRvSVLqw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data Mining for Building Rule-based Fault Diagnosis Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dianhui Wang</creator><creatorcontrib>Dianhui Wang</creatorcontrib><description>This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of rule generation and use, and a regularization model embedding some information on recognition rate, coverage rate and generalization capability for rule optimization. A case study is carried out by an engine diagnostics to illustrate effectiveness of our methodology.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 9787810778022</identifier><identifier>ISBN: 7810778021</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 7900669884</identifier><identifier>EISBN: 9787900669889</identifier><identifier>DOI: 10.1109/CHICC.2006.280946</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Control systems ; Data engineering ; Data mining ; Diagnostic expert systems ; Electronic mail ; Engines ; Fault diagnosis ; multilayer classifiers ; Nonhomogeneous media ; Power engineering and energy ; rule-based expert systems</subject><ispartof>2006 Chinese Control Conference, 2006, p.2206-2211</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4060494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4060494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dianhui Wang</creatorcontrib><title>Data Mining for Building Rule-based Fault Diagnosis Systems</title><title>2006 Chinese Control Conference</title><addtitle>CHICC</addtitle><description>This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of rule generation and use, and a regularization model embedding some information on recognition rate, coverage rate and generalization capability for rule optimization. A case study is carried out by an engine diagnostics to illustrate effectiveness of our methodology.</description><subject>Computer science</subject><subject>Control systems</subject><subject>Data engineering</subject><subject>Data mining</subject><subject>Diagnostic expert systems</subject><subject>Electronic mail</subject><subject>Engines</subject><subject>Fault diagnosis</subject><subject>multilayer classifiers</subject><subject>Nonhomogeneous media</subject><subject>Power engineering and energy</subject><subject>rule-based expert systems</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>9787810778022</isbn><isbn>7810778021</isbn><isbn>7900669884</isbn><isbn>9787900669889</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtOAjEUQOsrcUQ-wLiZHxi8vb32tnGlgwgJxkTZk860JTUDGDos-HswujknZ3OEuJMwkhLsQz2d1fUIAfQIDVjSZ-KG7Sm1NYbORYFSywot8oUYWjZsJDAbQLwUhbSKKsnaXIthzt8AIK1mQizE09j1rnxPm7RZlXG7K1_2qfO_8bnvQtW4HHw5cfuuL8fJrTbbnHL5dch9WOdbcRVdl8Pw3wOxmLwu6mk1_3ib1c_zKlnoK0dtwz42baCoMbJpvPGBDCs0MujopG_QKE0GPZLmE1Cp2LK1j9QGVANx_7dNIYTlzy6t3e6wJNBAltQRvSVLqw</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Dianhui Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200608</creationdate><title>Data Mining for Building Rule-based Fault Diagnosis Systems</title><author>Dianhui Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a4cb7dfbce4f62f78bd8de4873281e6fa1db2836482d2467d24233fc79954ce23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer science</topic><topic>Control systems</topic><topic>Data engineering</topic><topic>Data mining</topic><topic>Diagnostic expert systems</topic><topic>Electronic mail</topic><topic>Engines</topic><topic>Fault diagnosis</topic><topic>multilayer classifiers</topic><topic>Nonhomogeneous media</topic><topic>Power engineering and energy</topic><topic>rule-based expert systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Dianhui Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dianhui Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data Mining for Building Rule-based Fault Diagnosis Systems</atitle><btitle>2006 Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2006-08</date><risdate>2006</risdate><spage>2206</spage><epage>2211</epage><pages>2206-2211</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>9787810778022</isbn><isbn>7810778021</isbn><eisbn>7900669884</eisbn><eisbn>9787900669889</eisbn><abstract>This paper aims at developing rule-based fault diagnosis (RBFD) systems using data mining techniques, where we address a problem of generating rules for faults with low probability of occurrence but considerable conceptual importance. Main technical contributions include a multilayer structure of rule generation and use, and a regularization model embedding some information on recognition rate, coverage rate and generalization capability for rule optimization. A case study is carried out by an engine diagnostics to illustrate effectiveness of our methodology.</abstract><pub>IEEE</pub><doi>10.1109/CHICC.2006.280946</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1934-1768 |
ispartof | 2006 Chinese Control Conference, 2006, p.2206-2211 |
issn | 1934-1768 2161-2927 |
language | eng |
recordid | cdi_ieee_primary_4060494 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Control systems Data engineering Data mining Diagnostic expert systems Electronic mail Engines Fault diagnosis multilayer classifiers Nonhomogeneous media Power engineering and energy rule-based expert systems |
title | Data Mining for Building Rule-based Fault Diagnosis Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20Mining%20for%20Building%20Rule-based%20Fault%20Diagnosis%20Systems&rft.btitle=2006%20Chinese%20Control%20Conference&rft.au=Dianhui%20Wang&rft.date=2006-08&rft.spage=2206&rft.epage=2211&rft.pages=2206-2211&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=9787810778022&rft.isbn_list=7810778021&rft_id=info:doi/10.1109/CHICC.2006.280946&rft.eisbn=7900669884&rft.eisbn_list=9787900669889&rft_dat=%3Cieee_6IE%3E4060494%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-a4cb7dfbce4f62f78bd8de4873281e6fa1db2836482d2467d24233fc79954ce23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4060494&rfr_iscdi=true |