Loading…

3D Shape Reconstruction of Moving Object By Tracking the Sparse Singular Points

In this paper we propose a method to reconstruct the 3D shape of object using its different silhouettes through the rigid movement. The moving object is captured by two cameras during time. A robust curve stereo matching algorithm is employed to extract the precise location of some singular-points f...

Full description

Saved in:
Bibliographic Details
Main Authors: Ebrahimnezhad, H., Ghassemian, H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 197
container_issue
container_start_page 192
container_title
container_volume
creator Ebrahimnezhad, H.
Ghassemian, H.
description In this paper we propose a method to reconstruct the 3D shape of object using its different silhouettes through the rigid movement. The moving object is captured by two cameras during time. A robust curve stereo matching algorithm is employed to extract the precise location of some singular-points for any sequence. The motion of object is estimated by tracking these points and a large number of cameras can be constructed for the moving object during time. Finally, the silhouette cones of all virtual cameras are intersected to extract the fine visual hull. In the proposed method, the quality of reconstruction is improved by fusing the advantages of silhouette, motion and stereo. Because of using the curve matching scheme instead of color matching, our method is less sensitive to color adjustment between cameras and illumination changes of light source. Our method is applicable also to the low-texture object
doi_str_mv 10.1109/MMSP.2006.285295
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4064545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4064545</ieee_id><sourcerecordid>4064545</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-885f7f94165ee4af4be4d768332542f180be820f39286b1fd90002cd7f9511aa3</originalsourceid><addsrcrecordid>eNpVTt1LwzAcjIigzL4LvuQf6MzXr00edX7CSoedzyNtE5c525Jkwv57I_ricXDcwR2H0BUlc0qJuqmqZjVnhBRzJoEpOEGZKiVJ5KoERk__eSrOURbCjiRwBaDgAtX8HjdbPRn8arpxCNEfuujGAY8WV-OXG95x3e5MF_HdEa-97j5-org1uJm0D0mSP-y1x6vRDTFcojOr98FkfzpDb48P68VzvqyfXha3y9zREmIuJdjSKkELMEZoK1oj-rKQnDMQzFJJWiMZsVwxWbTU9ip9Zl2fOkCp1nyGrn93nTFmM3n3qf1xI0ghQAD_BuTQTxU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3D Shape Reconstruction of Moving Object By Tracking the Sparse Singular Points</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ebrahimnezhad, H. ; Ghassemian, H.</creator><creatorcontrib>Ebrahimnezhad, H. ; Ghassemian, H.</creatorcontrib><description>In this paper we propose a method to reconstruct the 3D shape of object using its different silhouettes through the rigid movement. The moving object is captured by two cameras during time. A robust curve stereo matching algorithm is employed to extract the precise location of some singular-points for any sequence. The motion of object is estimated by tracking these points and a large number of cameras can be constructed for the moving object during time. Finally, the silhouette cones of all virtual cameras are intersected to extract the fine visual hull. In the proposed method, the quality of reconstruction is improved by fusing the advantages of silhouette, motion and stereo. Because of using the curve matching scheme instead of color matching, our method is less sensitive to color adjustment between cameras and illumination changes of light source. Our method is applicable also to the low-texture object</description><identifier>ISBN: 9780780397514</identifier><identifier>ISBN: 0780397517</identifier><identifier>EISBN: 9780780397521</identifier><identifier>EISBN: 0780397525</identifier><identifier>DOI: 10.1109/MMSP.2006.285295</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Cameras ; curve stereo matching ; Image reconstruction ; motion ; Motion estimation ; Robustness ; Shape ; silhouette ; Sparse matrices ; sparse singular points ; Stereo vision ; Surface reconstruction ; Tracking ; visual hull</subject><ispartof>2006 IEEE Workshop on Multimedia Signal Processing, 2006, p.192-197</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4064545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4064545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ebrahimnezhad, H.</creatorcontrib><creatorcontrib>Ghassemian, H.</creatorcontrib><title>3D Shape Reconstruction of Moving Object By Tracking the Sparse Singular Points</title><title>2006 IEEE Workshop on Multimedia Signal Processing</title><addtitle>MMSP</addtitle><description>In this paper we propose a method to reconstruct the 3D shape of object using its different silhouettes through the rigid movement. The moving object is captured by two cameras during time. A robust curve stereo matching algorithm is employed to extract the precise location of some singular-points for any sequence. The motion of object is estimated by tracking these points and a large number of cameras can be constructed for the moving object during time. Finally, the silhouette cones of all virtual cameras are intersected to extract the fine visual hull. In the proposed method, the quality of reconstruction is improved by fusing the advantages of silhouette, motion and stereo. Because of using the curve matching scheme instead of color matching, our method is less sensitive to color adjustment between cameras and illumination changes of light source. Our method is applicable also to the low-texture object</description><subject>Calibration</subject><subject>Cameras</subject><subject>curve stereo matching</subject><subject>Image reconstruction</subject><subject>motion</subject><subject>Motion estimation</subject><subject>Robustness</subject><subject>Shape</subject><subject>silhouette</subject><subject>Sparse matrices</subject><subject>sparse singular points</subject><subject>Stereo vision</subject><subject>Surface reconstruction</subject><subject>Tracking</subject><subject>visual hull</subject><isbn>9780780397514</isbn><isbn>0780397517</isbn><isbn>9780780397521</isbn><isbn>0780397525</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVTt1LwzAcjIigzL4LvuQf6MzXr00edX7CSoedzyNtE5c525Jkwv57I_ricXDcwR2H0BUlc0qJuqmqZjVnhBRzJoEpOEGZKiVJ5KoERk__eSrOURbCjiRwBaDgAtX8HjdbPRn8arpxCNEfuujGAY8WV-OXG95x3e5MF_HdEa-97j5-org1uJm0D0mSP-y1x6vRDTFcojOr98FkfzpDb48P68VzvqyfXha3y9zREmIuJdjSKkELMEZoK1oj-rKQnDMQzFJJWiMZsVwxWbTU9ip9Zl2fOkCp1nyGrn93nTFmM3n3qf1xI0ghQAD_BuTQTxU</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Ebrahimnezhad, H.</creator><creator>Ghassemian, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>3D Shape Reconstruction of Moving Object By Tracking the Sparse Singular Points</title><author>Ebrahimnezhad, H. ; Ghassemian, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-885f7f94165ee4af4be4d768332542f180be820f39286b1fd90002cd7f9511aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>curve stereo matching</topic><topic>Image reconstruction</topic><topic>motion</topic><topic>Motion estimation</topic><topic>Robustness</topic><topic>Shape</topic><topic>silhouette</topic><topic>Sparse matrices</topic><topic>sparse singular points</topic><topic>Stereo vision</topic><topic>Surface reconstruction</topic><topic>Tracking</topic><topic>visual hull</topic><toplevel>online_resources</toplevel><creatorcontrib>Ebrahimnezhad, H.</creatorcontrib><creatorcontrib>Ghassemian, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ebrahimnezhad, H.</au><au>Ghassemian, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3D Shape Reconstruction of Moving Object By Tracking the Sparse Singular Points</atitle><btitle>2006 IEEE Workshop on Multimedia Signal Processing</btitle><stitle>MMSP</stitle><date>2006-10</date><risdate>2006</risdate><spage>192</spage><epage>197</epage><pages>192-197</pages><isbn>9780780397514</isbn><isbn>0780397517</isbn><eisbn>9780780397521</eisbn><eisbn>0780397525</eisbn><abstract>In this paper we propose a method to reconstruct the 3D shape of object using its different silhouettes through the rigid movement. The moving object is captured by two cameras during time. A robust curve stereo matching algorithm is employed to extract the precise location of some singular-points for any sequence. The motion of object is estimated by tracking these points and a large number of cameras can be constructed for the moving object during time. Finally, the silhouette cones of all virtual cameras are intersected to extract the fine visual hull. In the proposed method, the quality of reconstruction is improved by fusing the advantages of silhouette, motion and stereo. Because of using the curve matching scheme instead of color matching, our method is less sensitive to color adjustment between cameras and illumination changes of light source. Our method is applicable also to the low-texture object</abstract><pub>IEEE</pub><doi>10.1109/MMSP.2006.285295</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780397514
ispartof 2006 IEEE Workshop on Multimedia Signal Processing, 2006, p.192-197
issn
language eng
recordid cdi_ieee_primary_4064545
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Calibration
Cameras
curve stereo matching
Image reconstruction
motion
Motion estimation
Robustness
Shape
silhouette
Sparse matrices
sparse singular points
Stereo vision
Surface reconstruction
Tracking
visual hull
title 3D Shape Reconstruction of Moving Object By Tracking the Sparse Singular Points
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3D%20Shape%20Reconstruction%20of%20Moving%20Object%20By%20Tracking%20the%20Sparse%20Singular%20Points&rft.btitle=2006%20IEEE%20Workshop%20on%20Multimedia%20Signal%20Processing&rft.au=Ebrahimnezhad,%20H.&rft.date=2006-10&rft.spage=192&rft.epage=197&rft.pages=192-197&rft.isbn=9780780397514&rft.isbn_list=0780397517&rft_id=info:doi/10.1109/MMSP.2006.285295&rft.eisbn=9780780397521&rft.eisbn_list=0780397525&rft_dat=%3Cieee_6IE%3E4064545%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-885f7f94165ee4af4be4d768332542f180be820f39286b1fd90002cd7f9511aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4064545&rfr_iscdi=true