Loading…
On the Complexity of finding stopping set size in Tanner Graphs
The problem of determining whether a tanner graph for a linear block code has a stopping set of a given size is shown to be NP-complete.
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 158 |
container_issue | |
container_start_page | 157 |
container_title | |
container_volume | |
creator | Murali Krishnan, K. Priti Shankar |
description | The problem of determining whether a tanner graph for a linear block code has a stopping set of a given size is shown to be NP-complete. |
doi_str_mv | 10.1109/CISS.2006.286453 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4067794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4067794</ieee_id><sourcerecordid>4067794</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5a3cb198613a5b30dc563cfb263187e11370b7932e6a9ca34f49e1435132768f3</originalsourceid><addsrcrecordid>eNpNjL1OwzAURo0QEqhkR2LxCyT4-vp3QiiCtlKlDi1z5aTX1KhNojgD5elBwMC3nHOWj7E7EBWA8A_1crOppBCmks4ojRes8NaBkkoJ1MJf_m_l8ZoVOb-L76HX4OCGPa47Ph2I1_1pONJHms68jzymbp-6N56nfhh-hCae0yfx1PFt6Doa-XwMwyHfsqsYjpmKP87Y68vztl6Uq_V8WT-tygRWT6UO2DbgnQEMukGxb7XBNjbSIDhLAGhFYz1KMsG3AVVUnkChBpTWuIgzdv_7m4hoN4zpFMbzTgljrVf4BWIJSQo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the Complexity of finding stopping set size in Tanner Graphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Murali Krishnan, K. ; Priti Shankar</creator><creatorcontrib>Murali Krishnan, K. ; Priti Shankar</creatorcontrib><description>The problem of determining whether a tanner graph for a linear block code has a stopping set of a given size is shown to be NP-complete.</description><identifier>ISBN: 9781424403493</identifier><identifier>ISBN: 1424403499</identifier><identifier>EISBN: 9781424403509</identifier><identifier>EISBN: 1424403502</identifier><identifier>DOI: 10.1109/CISS.2006.286453</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automation ; Bipartite graph ; Computer science ; Failure analysis ; Iterative algorithms ; Iterative decoding ; Linear code ; NP-complete problem ; Parity check codes</subject><ispartof>2006 40th Annual Conference on Information Sciences and Systems, 2006, p.157-158</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4067794$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4067794$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Murali Krishnan, K.</creatorcontrib><creatorcontrib>Priti Shankar</creatorcontrib><title>On the Complexity of finding stopping set size in Tanner Graphs</title><title>2006 40th Annual Conference on Information Sciences and Systems</title><addtitle>CISS</addtitle><description>The problem of determining whether a tanner graph for a linear block code has a stopping set of a given size is shown to be NP-complete.</description><subject>Automation</subject><subject>Bipartite graph</subject><subject>Computer science</subject><subject>Failure analysis</subject><subject>Iterative algorithms</subject><subject>Iterative decoding</subject><subject>Linear code</subject><subject>NP-complete problem</subject><subject>Parity check codes</subject><isbn>9781424403493</isbn><isbn>1424403499</isbn><isbn>9781424403509</isbn><isbn>1424403502</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjL1OwzAURo0QEqhkR2LxCyT4-vp3QiiCtlKlDi1z5aTX1KhNojgD5elBwMC3nHOWj7E7EBWA8A_1crOppBCmks4ojRes8NaBkkoJ1MJf_m_l8ZoVOb-L76HX4OCGPa47Ph2I1_1pONJHms68jzymbp-6N56nfhh-hCae0yfx1PFt6Doa-XwMwyHfsqsYjpmKP87Y68vztl6Uq_V8WT-tygRWT6UO2DbgnQEMukGxb7XBNjbSIDhLAGhFYz1KMsG3AVVUnkChBpTWuIgzdv_7m4hoN4zpFMbzTgljrVf4BWIJSQo</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Murali Krishnan, K.</creator><creator>Priti Shankar</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200603</creationdate><title>On the Complexity of finding stopping set size in Tanner Graphs</title><author>Murali Krishnan, K. ; Priti Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5a3cb198613a5b30dc563cfb263187e11370b7932e6a9ca34f49e1435132768f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Automation</topic><topic>Bipartite graph</topic><topic>Computer science</topic><topic>Failure analysis</topic><topic>Iterative algorithms</topic><topic>Iterative decoding</topic><topic>Linear code</topic><topic>NP-complete problem</topic><topic>Parity check codes</topic><toplevel>online_resources</toplevel><creatorcontrib>Murali Krishnan, K.</creatorcontrib><creatorcontrib>Priti Shankar</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murali Krishnan, K.</au><au>Priti Shankar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the Complexity of finding stopping set size in Tanner Graphs</atitle><btitle>2006 40th Annual Conference on Information Sciences and Systems</btitle><stitle>CISS</stitle><date>2006-03</date><risdate>2006</risdate><spage>157</spage><epage>158</epage><pages>157-158</pages><isbn>9781424403493</isbn><isbn>1424403499</isbn><eisbn>9781424403509</eisbn><eisbn>1424403502</eisbn><abstract>The problem of determining whether a tanner graph for a linear block code has a stopping set of a given size is shown to be NP-complete.</abstract><pub>IEEE</pub><doi>10.1109/CISS.2006.286453</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424403493 |
ispartof | 2006 40th Annual Conference on Information Sciences and Systems, 2006, p.157-158 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4067794 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automation Bipartite graph Computer science Failure analysis Iterative algorithms Iterative decoding Linear code NP-complete problem Parity check codes |
title | On the Complexity of finding stopping set size in Tanner Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20Complexity%20of%20finding%20stopping%20set%20size%20in%20Tanner%20Graphs&rft.btitle=2006%2040th%20Annual%20Conference%20on%20Information%20Sciences%20and%20Systems&rft.au=Murali%20Krishnan,%20K.&rft.date=2006-03&rft.spage=157&rft.epage=158&rft.pages=157-158&rft.isbn=9781424403493&rft.isbn_list=1424403499&rft_id=info:doi/10.1109/CISS.2006.286453&rft.eisbn=9781424403509&rft.eisbn_list=1424403502&rft_dat=%3Cieee_6IE%3E4067794%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5a3cb198613a5b30dc563cfb263187e11370b7932e6a9ca34f49e1435132768f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4067794&rfr_iscdi=true |