Loading…
Thermal Process System Identification Using Particle Swarm Optimization
System identification adopting an open loop step response curve is a feasible way to obtain the mathematic model of the control object. Due to the satisfying performance in global optimization, evolution computing (EC) methods such as genetic algorithm have been applied to the open loop step respons...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 198 |
container_issue | |
container_start_page | 194 |
container_title | |
container_volume | 1 |
creator | Ze Dong Pu Han Dongfeng Wang Songming Jiao |
description | System identification adopting an open loop step response curve is a feasible way to obtain the mathematic model of the control object. Due to the satisfying performance in global optimization, evolution computing (EC) methods such as genetic algorithm have been applied to the open loop step response curve analysis and achieved effective results. In this paper, particle swarm optimization (PSO) algorithm which is considered as a new relative addition to the EC methods is introduced to solve the system identification problem for thermal process control objects. Typical forms of transfer functions for the thermal process are adopted, utilizing PSO algorithm to estimate the parameters, for the convenient application of which, a set of software is also developed. With these softwares, some characters of the experimental data are specified by the user. And then the initial values for the model parameters are deduced from these characters. Around these initial values, a smaller search space is determined, within which the PSO algorithm searches the optima for the model parameters. Thus the search efficiency can be improved remarkably. The software has been applied in some power plants, the results of which prove the effectiveness of the method |
doi_str_mv | 10.1109/ISIE.2006.295591 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4077922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4077922</ieee_id><sourcerecordid>4077922</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-92d9a92898bcfad526058bb8a54213be463c780186c2212dd6560e08d3746f133</originalsourceid><addsrcrecordid>eNpVjM1Kw0AURkdUsNTuBTfzAql37vzepZRaA4UWUtdlkkx0JGlLZkDq0yvqxm9zOHD4GLsTMBcC6KGsyuUcAcwcSWsSF2xG1gmFSoEiKy7_uVFXbILCyEILaW_YLKV3-J4kDUQTttq9hXHwPd-OxyakxKtzymHgZRsOOXax8TkeD_wlxcMr3_oxx6YPvPrw48A3pxyH-PlT3LLrzvcpzP44Zbun5W7xXKw3q3LxuC4iQS4IW_KEjlzddL7VaEC7unZeKxSyDsrIxjoQzjSIAtvWaAMBXCutMp2Qcsruf29jCGF_GuPgx_NegbWEKL8AnqxOiw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thermal Process System Identification Using Particle Swarm Optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ze Dong ; Pu Han ; Dongfeng Wang ; Songming Jiao</creator><creatorcontrib>Ze Dong ; Pu Han ; Dongfeng Wang ; Songming Jiao</creatorcontrib><description>System identification adopting an open loop step response curve is a feasible way to obtain the mathematic model of the control object. Due to the satisfying performance in global optimization, evolution computing (EC) methods such as genetic algorithm have been applied to the open loop step response curve analysis and achieved effective results. In this paper, particle swarm optimization (PSO) algorithm which is considered as a new relative addition to the EC methods is introduced to solve the system identification problem for thermal process control objects. Typical forms of transfer functions for the thermal process are adopted, utilizing PSO algorithm to estimate the parameters, for the convenient application of which, a set of software is also developed. With these softwares, some characters of the experimental data are specified by the user. And then the initial values for the model parameters are deduced from these characters. Around these initial values, a smaller search space is determined, within which the PSO algorithm searches the optima for the model parameters. Thus the search efficiency can be improved remarkably. The software has been applied in some power plants, the results of which prove the effectiveness of the method</description><identifier>ISSN: 2163-5137</identifier><identifier>ISBN: 9781424404964</identifier><identifier>ISBN: 1424404967</identifier><identifier>EISBN: 9781424404971</identifier><identifier>EISBN: 1424404975</identifier><identifier>DOI: 10.1109/ISIE.2006.295591</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Genetic algorithms ; Mathematical model ; Mathematics ; Open loop systems ; Optimization methods ; Particle swarm optimization ; Performance analysis ; Process control ; System identification</subject><ispartof>2006 IEEE International Symposium on Industrial Electronics, 2006, Vol.1, p.194-198</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4077922$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4077922$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ze Dong</creatorcontrib><creatorcontrib>Pu Han</creatorcontrib><creatorcontrib>Dongfeng Wang</creatorcontrib><creatorcontrib>Songming Jiao</creatorcontrib><title>Thermal Process System Identification Using Particle Swarm Optimization</title><title>2006 IEEE International Symposium on Industrial Electronics</title><addtitle>ISIE</addtitle><description>System identification adopting an open loop step response curve is a feasible way to obtain the mathematic model of the control object. Due to the satisfying performance in global optimization, evolution computing (EC) methods such as genetic algorithm have been applied to the open loop step response curve analysis and achieved effective results. In this paper, particle swarm optimization (PSO) algorithm which is considered as a new relative addition to the EC methods is introduced to solve the system identification problem for thermal process control objects. Typical forms of transfer functions for the thermal process are adopted, utilizing PSO algorithm to estimate the parameters, for the convenient application of which, a set of software is also developed. With these softwares, some characters of the experimental data are specified by the user. And then the initial values for the model parameters are deduced from these characters. Around these initial values, a smaller search space is determined, within which the PSO algorithm searches the optima for the model parameters. Thus the search efficiency can be improved remarkably. The software has been applied in some power plants, the results of which prove the effectiveness of the method</description><subject>Algorithm design and analysis</subject><subject>Genetic algorithms</subject><subject>Mathematical model</subject><subject>Mathematics</subject><subject>Open loop systems</subject><subject>Optimization methods</subject><subject>Particle swarm optimization</subject><subject>Performance analysis</subject><subject>Process control</subject><subject>System identification</subject><issn>2163-5137</issn><isbn>9781424404964</isbn><isbn>1424404967</isbn><isbn>9781424404971</isbn><isbn>1424404975</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVjM1Kw0AURkdUsNTuBTfzAql37vzepZRaA4UWUtdlkkx0JGlLZkDq0yvqxm9zOHD4GLsTMBcC6KGsyuUcAcwcSWsSF2xG1gmFSoEiKy7_uVFXbILCyEILaW_YLKV3-J4kDUQTttq9hXHwPd-OxyakxKtzymHgZRsOOXax8TkeD_wlxcMr3_oxx6YPvPrw48A3pxyH-PlT3LLrzvcpzP44Zbun5W7xXKw3q3LxuC4iQS4IW_KEjlzddL7VaEC7unZeKxSyDsrIxjoQzjSIAtvWaAMBXCutMp2Qcsruf29jCGF_GuPgx_NegbWEKL8AnqxOiw</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Ze Dong</creator><creator>Pu Han</creator><creator>Dongfeng Wang</creator><creator>Songming Jiao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200607</creationdate><title>Thermal Process System Identification Using Particle Swarm Optimization</title><author>Ze Dong ; Pu Han ; Dongfeng Wang ; Songming Jiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-92d9a92898bcfad526058bb8a54213be463c780186c2212dd6560e08d3746f133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithm design and analysis</topic><topic>Genetic algorithms</topic><topic>Mathematical model</topic><topic>Mathematics</topic><topic>Open loop systems</topic><topic>Optimization methods</topic><topic>Particle swarm optimization</topic><topic>Performance analysis</topic><topic>Process control</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Ze Dong</creatorcontrib><creatorcontrib>Pu Han</creatorcontrib><creatorcontrib>Dongfeng Wang</creatorcontrib><creatorcontrib>Songming Jiao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ze Dong</au><au>Pu Han</au><au>Dongfeng Wang</au><au>Songming Jiao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal Process System Identification Using Particle Swarm Optimization</atitle><btitle>2006 IEEE International Symposium on Industrial Electronics</btitle><stitle>ISIE</stitle><date>2006-07</date><risdate>2006</risdate><volume>1</volume><spage>194</spage><epage>198</epage><pages>194-198</pages><issn>2163-5137</issn><isbn>9781424404964</isbn><isbn>1424404967</isbn><eisbn>9781424404971</eisbn><eisbn>1424404975</eisbn><abstract>System identification adopting an open loop step response curve is a feasible way to obtain the mathematic model of the control object. Due to the satisfying performance in global optimization, evolution computing (EC) methods such as genetic algorithm have been applied to the open loop step response curve analysis and achieved effective results. In this paper, particle swarm optimization (PSO) algorithm which is considered as a new relative addition to the EC methods is introduced to solve the system identification problem for thermal process control objects. Typical forms of transfer functions for the thermal process are adopted, utilizing PSO algorithm to estimate the parameters, for the convenient application of which, a set of software is also developed. With these softwares, some characters of the experimental data are specified by the user. And then the initial values for the model parameters are deduced from these characters. Around these initial values, a smaller search space is determined, within which the PSO algorithm searches the optima for the model parameters. Thus the search efficiency can be improved remarkably. The software has been applied in some power plants, the results of which prove the effectiveness of the method</abstract><pub>IEEE</pub><doi>10.1109/ISIE.2006.295591</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2163-5137 |
ispartof | 2006 IEEE International Symposium on Industrial Electronics, 2006, Vol.1, p.194-198 |
issn | 2163-5137 |
language | eng |
recordid | cdi_ieee_primary_4077922 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Genetic algorithms Mathematical model Mathematics Open loop systems Optimization methods Particle swarm optimization Performance analysis Process control System identification |
title | Thermal Process System Identification Using Particle Swarm Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20Process%20System%20Identification%20Using%20Particle%20Swarm%20Optimization&rft.btitle=2006%20IEEE%20International%20Symposium%20on%20Industrial%20Electronics&rft.au=Ze%20Dong&rft.date=2006-07&rft.volume=1&rft.spage=194&rft.epage=198&rft.pages=194-198&rft.issn=2163-5137&rft.isbn=9781424404964&rft.isbn_list=1424404967&rft_id=info:doi/10.1109/ISIE.2006.295591&rft.eisbn=9781424404971&rft.eisbn_list=1424404975&rft_dat=%3Cieee_6IE%3E4077922%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-92d9a92898bcfad526058bb8a54213be463c780186c2212dd6560e08d3746f133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4077922&rfr_iscdi=true |