Loading…
Reliability and Sensitivity Analysis of Embedded Systems with Modular Dynamic Fault Trees
Fault trees theories have been used in years because they can easily provide a concise representation of failure behavior of general non-repairable fault-tolerant systems. But the defect of traditional fault trees is lack of accuracy when modeling dynamic failure behavior of certain systems with fau...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fault trees theories have been used in years because they can easily provide a concise representation of failure behavior of general non-repairable fault-tolerant systems. But the defect of traditional fault trees is lack of accuracy when modeling dynamic failure behavior of certain systems with fault-recovery process. A solution to this problem is called behavioral decomposition. A system will be divided into several dynamic or static modules, and each module can be further analyzed using BDD or Markov chains separately. In this paper, we will show a decomposition scheme that independent subtrees of a dynamic module are detected and solved hierarchically for saving computation time of solving Markov chains without losing unacceptable accuracy when assessing components sensitivities. In the end, we present our analyzing software toolkit that implements our enhanced methodology. |
---|---|
ISSN: | 2159-3442 2159-3450 |
DOI: | 10.1109/TENCON.2005.300968 |