Loading…
High-Speed Homopolar Inductor Alternators of Minimum Leakage Reactance
The leakage reactance of the machine is expressed as an equation involving slot leakage, end-connection leakage, differential leakage, stator-halves leakage, and tooth-top leakage reactance. This leakage reactance equation, or objective function, is then minimized under suitable constraints. Geometr...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 1970-07, Vol.AES-6 (4), p.491-497 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The leakage reactance of the machine is expressed as an equation involving slot leakage, end-connection leakage, differential leakage, stator-halves leakage, and tooth-top leakage reactance. This leakage reactance equation, or objective function, is then minimized under suitable constraints. Geometric programming is used to carry through the optimization procedure. A computer program is developed and applied to find the optimum leakage reactance for a 95 kVA, 208 V, wye-connected, 40 800 r/min aerospace alternator, using 8-, 10-, and 12-pole machines. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.1970.310130 |