Loading…

Spatiotemporal Denoising and Clustering of fMRI Data

This paper examines combined spatiotemporal denoising and clustering of functional magnetic resonance imaging (fMRI) time series. Most fMRI denoising methods are implemented either in spatial or temporal domain without taking into account both space and time information. In this work, a spatiotempor...

Full description

Saved in:
Bibliographic Details
Main Authors: Song, X., Murphy, M., Wyrwicz, A. M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2860
container_issue
container_start_page 2857
container_title
container_volume
creator Song, X.
Murphy, M.
Wyrwicz, A. M.
description This paper examines combined spatiotemporal denoising and clustering of functional magnetic resonance imaging (fMRI) time series. Most fMRI denoising methods are implemented either in spatial or temporal domain without taking into account both space and time information. In this work, a spatiotemporal denoising method is developed where spatial denoising is implemented by Bayesian shrinkage that uses temporal prior information obtained by statistical testing on all voxel time courses. After the denoising, a set of spatiotemporal features are extracted and characterized by a Gaussian mixture model, which is applied to detect activated areas. The proposed methods have been tested on both synthetic and experimental data, and the results demonstrate their effectiveness.
doi_str_mv 10.1109/ICIP.2006.313025
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4107165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4107165</ieee_id><sourcerecordid>4107165</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-93f1e71fe31a0ea2ee566bf6d2f5afc4c5b495b5b04c31f3559d723886c505703</originalsourceid><addsrcrecordid>eNpVj8tKxEAQRdsXGMfZC27yAxmrurv6sZTMqIERxcd66CTVEskkIYkL_15FN64uhwMHrhAXCCtE8FdFXjyuJIBZKVQg6UAsvXWopdagHcKhSKRymDnS_uifA3UsEiQpM-0cnIqzaXoHkIAKE6GfhzA3_cz7oR9Dm66565up6d7S0NVp3n5MM48_2Mc03j8V6TrM4VycxNBOvPzbhXi92bzkd9n24bbIr7dZg5bmzKuIbDGywgAcJDMZU0ZTy0ghVrqiUnsqqQRdKYyKyNf2-4QzFQFZUAtx-dttmHk3jM0-jJ87jWDRkPoCXMZIvQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatiotemporal Denoising and Clustering of fMRI Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Song, X. ; Murphy, M. ; Wyrwicz, A. M.</creator><creatorcontrib>Song, X. ; Murphy, M. ; Wyrwicz, A. M.</creatorcontrib><description>This paper examines combined spatiotemporal denoising and clustering of functional magnetic resonance imaging (fMRI) time series. Most fMRI denoising methods are implemented either in spatial or temporal domain without taking into account both space and time information. In this work, a spatiotemporal denoising method is developed where spatial denoising is implemented by Bayesian shrinkage that uses temporal prior information obtained by statistical testing on all voxel time courses. After the denoising, a set of spatiotemporal features are extracted and characterized by a Gaussian mixture model, which is applied to detect activated areas. The proposed methods have been tested on both synthetic and experimental data, and the results demonstrate their effectiveness.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424404803</identifier><identifier>ISBN: 1424404800</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424404810</identifier><identifier>EISBN: 1424404819</identifier><identifier>DOI: 10.1109/ICIP.2006.313025</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Bayesian shrinkage ; Brain ; Feature extraction ; Functional magnetic resonance imaging ; Gaussian mixture model ; Gaussian noise ; Magnetic resonance imaging ; Noise reduction ; Parameter estimation ; Spatiotemporal phenomena ; Testing ; wavelet ; Wavelet coefficients</subject><ispartof>2006 International Conference on Image Processing, 2006, p.2857-2860</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4107165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4107165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, X.</creatorcontrib><creatorcontrib>Murphy, M.</creatorcontrib><creatorcontrib>Wyrwicz, A. M.</creatorcontrib><title>Spatiotemporal Denoising and Clustering of fMRI Data</title><title>2006 International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>This paper examines combined spatiotemporal denoising and clustering of functional magnetic resonance imaging (fMRI) time series. Most fMRI denoising methods are implemented either in spatial or temporal domain without taking into account both space and time information. In this work, a spatiotemporal denoising method is developed where spatial denoising is implemented by Bayesian shrinkage that uses temporal prior information obtained by statistical testing on all voxel time courses. After the denoising, a set of spatiotemporal features are extracted and characterized by a Gaussian mixture model, which is applied to detect activated areas. The proposed methods have been tested on both synthetic and experimental data, and the results demonstrate their effectiveness.</description><subject>Bayesian methods</subject><subject>Bayesian shrinkage</subject><subject>Brain</subject><subject>Feature extraction</subject><subject>Functional magnetic resonance imaging</subject><subject>Gaussian mixture model</subject><subject>Gaussian noise</subject><subject>Magnetic resonance imaging</subject><subject>Noise reduction</subject><subject>Parameter estimation</subject><subject>Spatiotemporal phenomena</subject><subject>Testing</subject><subject>wavelet</subject><subject>Wavelet coefficients</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424404803</isbn><isbn>1424404800</isbn><isbn>9781424404810</isbn><isbn>1424404819</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj8tKxEAQRdsXGMfZC27yAxmrurv6sZTMqIERxcd66CTVEskkIYkL_15FN64uhwMHrhAXCCtE8FdFXjyuJIBZKVQg6UAsvXWopdagHcKhSKRymDnS_uifA3UsEiQpM-0cnIqzaXoHkIAKE6GfhzA3_cz7oR9Dm66565up6d7S0NVp3n5MM48_2Mc03j8V6TrM4VycxNBOvPzbhXi92bzkd9n24bbIr7dZg5bmzKuIbDGywgAcJDMZU0ZTy0ghVrqiUnsqqQRdKYyKyNf2-4QzFQFZUAtx-dttmHk3jM0-jJ87jWDRkPoCXMZIvQ</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Song, X.</creator><creator>Murphy, M.</creator><creator>Wyrwicz, A. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Spatiotemporal Denoising and Clustering of fMRI Data</title><author>Song, X. ; Murphy, M. ; Wyrwicz, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-93f1e71fe31a0ea2ee566bf6d2f5afc4c5b495b5b04c31f3559d723886c505703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bayesian methods</topic><topic>Bayesian shrinkage</topic><topic>Brain</topic><topic>Feature extraction</topic><topic>Functional magnetic resonance imaging</topic><topic>Gaussian mixture model</topic><topic>Gaussian noise</topic><topic>Magnetic resonance imaging</topic><topic>Noise reduction</topic><topic>Parameter estimation</topic><topic>Spatiotemporal phenomena</topic><topic>Testing</topic><topic>wavelet</topic><topic>Wavelet coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, X.</creatorcontrib><creatorcontrib>Murphy, M.</creatorcontrib><creatorcontrib>Wyrwicz, A. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, X.</au><au>Murphy, M.</au><au>Wyrwicz, A. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatiotemporal Denoising and Clustering of fMRI Data</atitle><btitle>2006 International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2006-10</date><risdate>2006</risdate><spage>2857</spage><epage>2860</epage><pages>2857-2860</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424404803</isbn><isbn>1424404800</isbn><eisbn>9781424404810</eisbn><eisbn>1424404819</eisbn><abstract>This paper examines combined spatiotemporal denoising and clustering of functional magnetic resonance imaging (fMRI) time series. Most fMRI denoising methods are implemented either in spatial or temporal domain without taking into account both space and time information. In this work, a spatiotemporal denoising method is developed where spatial denoising is implemented by Bayesian shrinkage that uses temporal prior information obtained by statistical testing on all voxel time courses. After the denoising, a set of spatiotemporal features are extracted and characterized by a Gaussian mixture model, which is applied to detect activated areas. The proposed methods have been tested on both synthetic and experimental data, and the results demonstrate their effectiveness.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2006.313025</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2006 International Conference on Image Processing, 2006, p.2857-2860
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_4107165
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Bayesian shrinkage
Brain
Feature extraction
Functional magnetic resonance imaging
Gaussian mixture model
Gaussian noise
Magnetic resonance imaging
Noise reduction
Parameter estimation
Spatiotemporal phenomena
Testing
wavelet
Wavelet coefficients
title Spatiotemporal Denoising and Clustering of fMRI Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatiotemporal%20Denoising%20and%20Clustering%20of%20fMRI%20Data&rft.btitle=2006%20International%20Conference%20on%20Image%20Processing&rft.au=Song,%20X.&rft.date=2006-10&rft.spage=2857&rft.epage=2860&rft.pages=2857-2860&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424404803&rft.isbn_list=1424404800&rft_id=info:doi/10.1109/ICIP.2006.313025&rft.eisbn=9781424404810&rft.eisbn_list=1424404819&rft_dat=%3Cieee_6IE%3E4107165%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-93f1e71fe31a0ea2ee566bf6d2f5afc4c5b495b5b04c31f3559d723886c505703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4107165&rfr_iscdi=true