Loading…
Device Technology for embedded DRAM utilizing stacked MIM(Metal-Insulator-Metal) Capacitor
This paper presents embedded DRAM device technology utilizing stacked MIM(metal-insulator-metal) capacitor. Targeted for high random-access performance as well as low-power data-streaming applications, original structure named "full metal DRAM" has been devised and implemented from 150nm g...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents embedded DRAM device technology utilizing stacked MIM(metal-insulator-metal) capacitor. Targeted for high random-access performance as well as low-power data-streaming applications, original structure named "full metal DRAM" has been devised and implemented from 150nm generation. This features reduced parasitic resistance of DRAM cell and fully-compatible CMOS Trs. characteristics with that of leading-edge CMOS. In 90nm generation, ZrO 2 is introduced as capacitor dielectric material for cell size reduction. For the next generation of 55nm, high-k gate dielectric(HfSiON) will be introduced in CMOS platform, which can be effectively exploited for embedded DRAM scaling and performance improvement |
---|---|
ISSN: | 0886-5930 2152-3630 |
DOI: | 10.1109/CICC.2006.320987 |