Loading…
Small Signal Modeling of a High Bandwidth Voltage Regulator Using Coupled Inductors
Today's voltage regulator (VR) for the microprocessor requires a current loop to achieve adaptive voltage positioning and phase current sharing. A fundamental limitation, current loop sample hold effect, limits the control bandwidth to be pushed beyond 1/6 of the switching frequency. This paper...
Saved in:
Published in: | IEEE transactions on power electronics 2007-03, Vol.22 (2), p.399-406 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Today's voltage regulator (VR) for the microprocessor requires a current loop to achieve adaptive voltage positioning and phase current sharing. A fundamental limitation, current loop sample hold effect, limits the control bandwidth to be pushed beyond 1/6 of the switching frequency. This paper reveals the limitation of the control bandwidth of a two-phase buck converter using peak current control scheme. The limitation can be overcome by coupling the two output inductors. A new small signal model is proposed to study the sample hold effect in coupled-inductor implementations. The relationship between the coupling coefficient and the sample hold effect is then discussed. Based on these understandings, a strongly coupled two-phase buck converter has double the bandwidth of the noncoupled VR; and this is experimentally verified |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2006.889905 |