Loading…

A Multiscale Parametric Background Model for Stationary Foreground Object Detection

Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the prop...

Full description

Saved in:
Bibliographic Details
Main Authors: Cheng, Steven, Luo, Xingzhi, Bhandarkar, Suchendra M.
Format: Conference Proceeding
Language:eng ; jpn
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 18
container_issue
container_start_page 18
container_title
container_volume
creator Cheng, Steven
Luo, Xingzhi
Bhandarkar, Suchendra M.
description Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings.
doi_str_mv 10.1109/WMVC.2007.1
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4118814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4118814</ieee_id><sourcerecordid>4118814</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-cd4fc7dcf476f8e8e8e538e94c8033fa249d90e89eb570cf6cd08454cc441afd3</originalsourceid><addsrcrecordid>eNotjr1OwzAURi0hJKB0YmTxCyRcx05sjyXQgtSoSOVnrNzra5SSNshxB96eIKpvOMORjj7GbgTkQoC9-2je67wA0Lk4Y1egK1sW2kq4YNNh2AGAsJUFoS_ZesabY5faAV1H_MVFt6cUW-T3Dr8-Y388eN70njoe-sjXyaW2P7j4w-d9pJNfbXeEiT9QGjHqa3YeXDfQ9MQJe5s_vtZP2XK1eK5ny6wVZZUy9Cqg9hiUroKhv5XSkFVoQMrgCmW9BTKWtqUGDBV6MKpUiEoJF7ycsNv_bktEm-_Y7sdjGyWEMULJX2ScTlI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Multiscale Parametric Background Model for Stationary Foreground Object Detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng, Steven ; Luo, Xingzhi ; Bhandarkar, Suchendra M.</creator><creatorcontrib>Cheng, Steven ; Luo, Xingzhi ; Bhandarkar, Suchendra M.</creatorcontrib><description>Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings.</description><identifier>ISBN: 0769527930</identifier><identifier>ISBN: 9780769527932</identifier><identifier>DOI: 10.1109/WMVC.2007.1</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Computer science ; Gaussian distribution ; Histograms ; Layout ; Lighting ; Object detection ; Road vehicles ; Vehicle dynamics ; Video surveillance</subject><ispartof>2007 IEEE Workshop on Motion and Video Computing (WMVC'07), 2007, p.18-18</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4118814$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4118814$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Steven</creatorcontrib><creatorcontrib>Luo, Xingzhi</creatorcontrib><creatorcontrib>Bhandarkar, Suchendra M.</creatorcontrib><title>A Multiscale Parametric Background Model for Stationary Foreground Object Detection</title><title>2007 IEEE Workshop on Motion and Video Computing (WMVC'07)</title><addtitle>WMVC</addtitle><description>Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings.</description><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Gaussian distribution</subject><subject>Histograms</subject><subject>Layout</subject><subject>Lighting</subject><subject>Object detection</subject><subject>Road vehicles</subject><subject>Vehicle dynamics</subject><subject>Video surveillance</subject><isbn>0769527930</isbn><isbn>9780769527932</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjr1OwzAURi0hJKB0YmTxCyRcx05sjyXQgtSoSOVnrNzra5SSNshxB96eIKpvOMORjj7GbgTkQoC9-2je67wA0Lk4Y1egK1sW2kq4YNNh2AGAsJUFoS_ZesabY5faAV1H_MVFt6cUW-T3Dr8-Y388eN70njoe-sjXyaW2P7j4w-d9pJNfbXeEiT9QGjHqa3YeXDfQ9MQJe5s_vtZP2XK1eK5ny6wVZZUy9Cqg9hiUroKhv5XSkFVoQMrgCmW9BTKWtqUGDBV6MKpUiEoJF7ycsNv_bktEm-_Y7sdjGyWEMULJX2ScTlI</recordid><startdate>200702</startdate><enddate>200702</enddate><creator>Cheng, Steven</creator><creator>Luo, Xingzhi</creator><creator>Bhandarkar, Suchendra M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200702</creationdate><title>A Multiscale Parametric Background Model for Stationary Foreground Object Detection</title><author>Cheng, Steven ; Luo, Xingzhi ; Bhandarkar, Suchendra M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-cd4fc7dcf476f8e8e8e538e94c8033fa249d90e89eb570cf6cd08454cc441afd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Gaussian distribution</topic><topic>Histograms</topic><topic>Layout</topic><topic>Lighting</topic><topic>Object detection</topic><topic>Road vehicles</topic><topic>Vehicle dynamics</topic><topic>Video surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Steven</creatorcontrib><creatorcontrib>Luo, Xingzhi</creatorcontrib><creatorcontrib>Bhandarkar, Suchendra M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Steven</au><au>Luo, Xingzhi</au><au>Bhandarkar, Suchendra M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Multiscale Parametric Background Model for Stationary Foreground Object Detection</atitle><btitle>2007 IEEE Workshop on Motion and Video Computing (WMVC'07)</btitle><stitle>WMVC</stitle><date>2007-02</date><risdate>2007</risdate><spage>18</spage><epage>18</epage><pages>18-18</pages><isbn>0769527930</isbn><isbn>9780769527932</isbn><abstract>Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings.</abstract><pub>IEEE</pub><doi>10.1109/WMVC.2007.1</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769527930
ispartof 2007 IEEE Workshop on Motion and Video Computing (WMVC'07), 2007, p.18-18
issn
language eng ; jpn
recordid cdi_ieee_primary_4118814
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Computer science
Gaussian distribution
Histograms
Layout
Lighting
Object detection
Road vehicles
Vehicle dynamics
Video surveillance
title A Multiscale Parametric Background Model for Stationary Foreground Object Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T06%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Multiscale%20Parametric%20Background%20Model%20for%20Stationary%20Foreground%20Object%20Detection&rft.btitle=2007%20IEEE%20Workshop%20on%20Motion%20and%20Video%20Computing%20(WMVC'07)&rft.au=Cheng,%20Steven&rft.date=2007-02&rft.spage=18&rft.epage=18&rft.pages=18-18&rft.isbn=0769527930&rft.isbn_list=9780769527932&rft_id=info:doi/10.1109/WMVC.2007.1&rft_dat=%3Cieee_6IE%3E4118814%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i156t-cd4fc7dcf476f8e8e8e538e94c8033fa249d90e89eb570cf6cd08454cc441afd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4118814&rfr_iscdi=true