Loading…
A Multiscale Parametric Background Model for Stationary Foreground Object Detection
Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the prop...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | eng ; jpn |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 18 |
container_issue | |
container_start_page | 18 |
container_title | |
container_volume | |
creator | Cheng, Steven Luo, Xingzhi Bhandarkar, Suchendra M. |
description | Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings. |
doi_str_mv | 10.1109/WMVC.2007.1 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4118814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4118814</ieee_id><sourcerecordid>4118814</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-cd4fc7dcf476f8e8e8e538e94c8033fa249d90e89eb570cf6cd08454cc441afd3</originalsourceid><addsrcrecordid>eNotjr1OwzAURi0hJKB0YmTxCyRcx05sjyXQgtSoSOVnrNzra5SSNshxB96eIKpvOMORjj7GbgTkQoC9-2je67wA0Lk4Y1egK1sW2kq4YNNh2AGAsJUFoS_ZesabY5faAV1H_MVFt6cUW-T3Dr8-Y388eN70njoe-sjXyaW2P7j4w-d9pJNfbXeEiT9QGjHqa3YeXDfQ9MQJe5s_vtZP2XK1eK5ny6wVZZUy9Cqg9hiUroKhv5XSkFVoQMrgCmW9BTKWtqUGDBV6MKpUiEoJF7ycsNv_bktEm-_Y7sdjGyWEMULJX2ScTlI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Multiscale Parametric Background Model for Stationary Foreground Object Detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng, Steven ; Luo, Xingzhi ; Bhandarkar, Suchendra M.</creator><creatorcontrib>Cheng, Steven ; Luo, Xingzhi ; Bhandarkar, Suchendra M.</creatorcontrib><description>Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings.</description><identifier>ISBN: 0769527930</identifier><identifier>ISBN: 9780769527932</identifier><identifier>DOI: 10.1109/WMVC.2007.1</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Computer science ; Gaussian distribution ; Histograms ; Layout ; Lighting ; Object detection ; Road vehicles ; Vehicle dynamics ; Video surveillance</subject><ispartof>2007 IEEE Workshop on Motion and Video Computing (WMVC'07), 2007, p.18-18</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4118814$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4118814$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Steven</creatorcontrib><creatorcontrib>Luo, Xingzhi</creatorcontrib><creatorcontrib>Bhandarkar, Suchendra M.</creatorcontrib><title>A Multiscale Parametric Background Model for Stationary Foreground Object Detection</title><title>2007 IEEE Workshop on Motion and Video Computing (WMVC'07)</title><addtitle>WMVC</addtitle><description>Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings.</description><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Gaussian distribution</subject><subject>Histograms</subject><subject>Layout</subject><subject>Lighting</subject><subject>Object detection</subject><subject>Road vehicles</subject><subject>Vehicle dynamics</subject><subject>Video surveillance</subject><isbn>0769527930</isbn><isbn>9780769527932</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjr1OwzAURi0hJKB0YmTxCyRcx05sjyXQgtSoSOVnrNzra5SSNshxB96eIKpvOMORjj7GbgTkQoC9-2je67wA0Lk4Y1egK1sW2kq4YNNh2AGAsJUFoS_ZesabY5faAV1H_MVFt6cUW-T3Dr8-Y388eN70njoe-sjXyaW2P7j4w-d9pJNfbXeEiT9QGjHqa3YeXDfQ9MQJe5s_vtZP2XK1eK5ny6wVZZUy9Cqg9hiUroKhv5XSkFVoQMrgCmW9BTKWtqUGDBV6MKpUiEoJF7ycsNv_bktEm-_Y7sdjGyWEMULJX2ScTlI</recordid><startdate>200702</startdate><enddate>200702</enddate><creator>Cheng, Steven</creator><creator>Luo, Xingzhi</creator><creator>Bhandarkar, Suchendra M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200702</creationdate><title>A Multiscale Parametric Background Model for Stationary Foreground Object Detection</title><author>Cheng, Steven ; Luo, Xingzhi ; Bhandarkar, Suchendra M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-cd4fc7dcf476f8e8e8e538e94c8033fa249d90e89eb570cf6cd08454cc441afd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Gaussian distribution</topic><topic>Histograms</topic><topic>Layout</topic><topic>Lighting</topic><topic>Object detection</topic><topic>Road vehicles</topic><topic>Vehicle dynamics</topic><topic>Video surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Steven</creatorcontrib><creatorcontrib>Luo, Xingzhi</creatorcontrib><creatorcontrib>Bhandarkar, Suchendra M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Steven</au><au>Luo, Xingzhi</au><au>Bhandarkar, Suchendra M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Multiscale Parametric Background Model for Stationary Foreground Object Detection</atitle><btitle>2007 IEEE Workshop on Motion and Video Computing (WMVC'07)</btitle><stitle>WMVC</stitle><date>2007-02</date><risdate>2007</risdate><spage>18</spage><epage>18</epage><pages>18-18</pages><isbn>0769527930</isbn><isbn>9780769527932</isbn><abstract>Detection of stationary foreground objects within a dynamic scene is one of the goals of a video surveillance system. A parametric background maintenance and updating scheme, based on a multiple Gaussian mixture model that operates on multiple time scales, is proposed. Each color cluster in the proposed model is assigned a weight which measures the time duration and temporal recurrence frequency of the cluster. Sudden illumination changes are handled by using an adaptive histogram template whereas gradual illumination changes are automatically resolved with the adaptive background model. Stationary foreground objects are detected by maintaining their temporal history in the dynamic scene at multiple time scales. Experimental results show that the proposed scheme performs well in three distinct real-world settings.</abstract><pub>IEEE</pub><doi>10.1109/WMVC.2007.1</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769527930 |
ispartof | 2007 IEEE Workshop on Motion and Video Computing (WMVC'07), 2007, p.18-18 |
issn | |
language | eng ; jpn |
recordid | cdi_ieee_primary_4118814 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Computer science Gaussian distribution Histograms Layout Lighting Object detection Road vehicles Vehicle dynamics Video surveillance |
title | A Multiscale Parametric Background Model for Stationary Foreground Object Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T06%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Multiscale%20Parametric%20Background%20Model%20for%20Stationary%20Foreground%20Object%20Detection&rft.btitle=2007%20IEEE%20Workshop%20on%20Motion%20and%20Video%20Computing%20(WMVC'07)&rft.au=Cheng,%20Steven&rft.date=2007-02&rft.spage=18&rft.epage=18&rft.pages=18-18&rft.isbn=0769527930&rft.isbn_list=9780769527932&rft_id=info:doi/10.1109/WMVC.2007.1&rft_dat=%3Cieee_6IE%3E4118814%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i156t-cd4fc7dcf476f8e8e8e538e94c8033fa249d90e89eb570cf6cd08454cc441afd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4118814&rfr_iscdi=true |