Loading…

Magnetically induced currents and fields in the canine heart: a finite element study

A three-dimensional finite element model representing the conductive anatomy of the canine thorax was used to study magnetically induced currents in the myocardium. In this study, we simulated an applied magnetic field previously shown to cause irregular cardiac activity in canine experiments. We in...

Full description

Saved in:
Bibliographic Details
Main Authors: Ragan, P.M., Eisenberg, S.R., Wang, W.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A three-dimensional finite element model representing the conductive anatomy of the canine thorax was used to study magnetically induced currents in the myocardium. In this study, we simulated an applied magnetic field previously shown to cause irregular cardiac activity in canine experiments. We investigated the influence of model shape, conductive inhomogeneity, and anisotropy on the spatial distribution of the induced myocardial current density and its maximum (J/sub max/). Results suggest that shape, conductive inhomogeneity and anisotropy substantially influence myocardial current distributions and J/sub max/. Neglecting these factors yields results that substantially overestimate J/sub max/.< >
DOI:10.1109/IEMBS.1994.412024