Loading…

Shared Features for Scalable Appearance-Based Object Recognition

We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between d...

Full description

Saved in:
Bibliographic Details
Main Authors: Murphy-Chutorian, E., Triesch, J.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573
cites
container_end_page 21
container_issue
container_start_page 16
container_title
container_volume 1
creator Murphy-Chutorian, E.
Triesch, J.
description We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between different object models. In contrast to traditional recognition methods that scale linearly with the number of objects, the shared features can be exploited by bottom-up search algorithms which require a constant number of feature comparisons for any number of objects. We demonstrate the feasibility of this approach on a novel database of 50 everyday objects in cluttered real-world scenes. Using Gabor wavelet-response features extracted only at corner points, our system achieves good recognition results despite substantial occlusion and background clutter.
doi_str_mv 10.1109/ACVMOT.2005.109
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4129454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4129454</ieee_id><sourcerecordid>4129454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573</originalsourceid><addsrcrecordid>eNotjM1KxDAURgMiKGPXLtz0BVrz2yQ7a3FUGCk4o9vhJrnVDrUtSV349hb02xwOHD5CrhktGaP2tm7eX9pDySlV5epnJLPaUF1Zxblm6oJkKZ3oOmFFxc0ludt_QsSQbxGW74gp76aY7z0M4AbM63lGiDB6LO4hrVnrTuiX_BX99DH2Sz-NV-S8gyFh9s8Neds-HJqnYtc-Pjf1rvCcs6XoVCeYl8idoyx4DdRgsKFiqKQWxgsOQVVSOxSBemm5AWcEF04xU4HSYkNu_n57RDzOsf-C-HOUjFuppPgFBI5HeQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shared Features for Scalable Appearance-Based Object Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Murphy-Chutorian, E. ; Triesch, J.</creator><creatorcontrib>Murphy-Chutorian, E. ; Triesch, J.</creatorcontrib><description>We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between different object models. In contrast to traditional recognition methods that scale linearly with the number of objects, the shared features can be exploited by bottom-up search algorithms which require a constant number of feature comparisons for any number of objects. We demonstrate the feasibility of this approach on a novel database of 50 everyday objects in cluttered real-world scenes. Using Gabor wavelet-response features extracted only at corner points, our system achieves good recognition results despite substantial occlusion and background clutter.</description><identifier>ISBN: 9780769522715</identifier><identifier>ISBN: 0769522718</identifier><identifier>DOI: 10.1109/ACVMOT.2005.109</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boosting ; Cognitive science ; Computer vision ; Feature extraction ; Layout ; Object detection ; Object recognition ; Quantization ; Runtime ; Spatial databases</subject><ispartof>2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1, 2005, Vol.1, p.16-21</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4129454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4129454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Murphy-Chutorian, E.</creatorcontrib><creatorcontrib>Triesch, J.</creatorcontrib><title>Shared Features for Scalable Appearance-Based Object Recognition</title><title>2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1</title><addtitle>ACVMOT</addtitle><description>We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between different object models. In contrast to traditional recognition methods that scale linearly with the number of objects, the shared features can be exploited by bottom-up search algorithms which require a constant number of feature comparisons for any number of objects. We demonstrate the feasibility of this approach on a novel database of 50 everyday objects in cluttered real-world scenes. Using Gabor wavelet-response features extracted only at corner points, our system achieves good recognition results despite substantial occlusion and background clutter.</description><subject>Boosting</subject><subject>Cognitive science</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Layout</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Quantization</subject><subject>Runtime</subject><subject>Spatial databases</subject><isbn>9780769522715</isbn><isbn>0769522718</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1KxDAURgMiKGPXLtz0BVrz2yQ7a3FUGCk4o9vhJrnVDrUtSV349hb02xwOHD5CrhktGaP2tm7eX9pDySlV5epnJLPaUF1Zxblm6oJkKZ3oOmFFxc0ludt_QsSQbxGW74gp76aY7z0M4AbM63lGiDB6LO4hrVnrTuiX_BX99DH2Sz-NV-S8gyFh9s8Neds-HJqnYtc-Pjf1rvCcs6XoVCeYl8idoyx4DdRgsKFiqKQWxgsOQVVSOxSBemm5AWcEF04xU4HSYkNu_n57RDzOsf-C-HOUjFuppPgFBI5HeQ</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Murphy-Chutorian, E.</creator><creator>Triesch, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200501</creationdate><title>Shared Features for Scalable Appearance-Based Object Recognition</title><author>Murphy-Chutorian, E. ; Triesch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Boosting</topic><topic>Cognitive science</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Layout</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Quantization</topic><topic>Runtime</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Murphy-Chutorian, E.</creatorcontrib><creatorcontrib>Triesch, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murphy-Chutorian, E.</au><au>Triesch, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shared Features for Scalable Appearance-Based Object Recognition</atitle><btitle>2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1</btitle><stitle>ACVMOT</stitle><date>2005-01</date><risdate>2005</risdate><volume>1</volume><spage>16</spage><epage>21</epage><pages>16-21</pages><isbn>9780769522715</isbn><isbn>0769522718</isbn><abstract>We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between different object models. In contrast to traditional recognition methods that scale linearly with the number of objects, the shared features can be exploited by bottom-up search algorithms which require a constant number of feature comparisons for any number of objects. We demonstrate the feasibility of this approach on a novel database of 50 everyday objects in cluttered real-world scenes. Using Gabor wavelet-response features extracted only at corner points, our system achieves good recognition results despite substantial occlusion and background clutter.</abstract><pub>IEEE</pub><doi>10.1109/ACVMOT.2005.109</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769522715
ispartof 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1, 2005, Vol.1, p.16-21
issn
language eng
recordid cdi_ieee_primary_4129454
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Boosting
Cognitive science
Computer vision
Feature extraction
Layout
Object detection
Object recognition
Quantization
Runtime
Spatial databases
title Shared Features for Scalable Appearance-Based Object Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shared%20Features%20for%20Scalable%20Appearance-Based%20Object%20Recognition&rft.btitle=2005%20Seventh%20IEEE%20Workshops%20on%20Applications%20of%20Computer%20Vision%20(WACV/MOTION'05)%20-%20Volume%201&rft.au=Murphy-Chutorian,%20E.&rft.date=2005-01&rft.volume=1&rft.spage=16&rft.epage=21&rft.pages=16-21&rft.isbn=9780769522715&rft.isbn_list=0769522718&rft_id=info:doi/10.1109/ACVMOT.2005.109&rft_dat=%3Cieee_6IE%3E4129454%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4129454&rfr_iscdi=true