Loading…
Shared Features for Scalable Appearance-Based Object Recognition
We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between d...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573 |
---|---|
cites | |
container_end_page | 21 |
container_issue | |
container_start_page | 16 |
container_title | |
container_volume | 1 |
creator | Murphy-Chutorian, E. Triesch, J. |
description | We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between different object models. In contrast to traditional recognition methods that scale linearly with the number of objects, the shared features can be exploited by bottom-up search algorithms which require a constant number of feature comparisons for any number of objects. We demonstrate the feasibility of this approach on a novel database of 50 everyday objects in cluttered real-world scenes. Using Gabor wavelet-response features extracted only at corner points, our system achieves good recognition results despite substantial occlusion and background clutter. |
doi_str_mv | 10.1109/ACVMOT.2005.109 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4129454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4129454</ieee_id><sourcerecordid>4129454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573</originalsourceid><addsrcrecordid>eNotjM1KxDAURgMiKGPXLtz0BVrz2yQ7a3FUGCk4o9vhJrnVDrUtSV349hb02xwOHD5CrhktGaP2tm7eX9pDySlV5epnJLPaUF1Zxblm6oJkKZ3oOmFFxc0ludt_QsSQbxGW74gp76aY7z0M4AbM63lGiDB6LO4hrVnrTuiX_BX99DH2Sz-NV-S8gyFh9s8Neds-HJqnYtc-Pjf1rvCcs6XoVCeYl8idoyx4DdRgsKFiqKQWxgsOQVVSOxSBemm5AWcEF04xU4HSYkNu_n57RDzOsf-C-HOUjFuppPgFBI5HeQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shared Features for Scalable Appearance-Based Object Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Murphy-Chutorian, E. ; Triesch, J.</creator><creatorcontrib>Murphy-Chutorian, E. ; Triesch, J.</creatorcontrib><description>We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between different object models. In contrast to traditional recognition methods that scale linearly with the number of objects, the shared features can be exploited by bottom-up search algorithms which require a constant number of feature comparisons for any number of objects. We demonstrate the feasibility of this approach on a novel database of 50 everyday objects in cluttered real-world scenes. Using Gabor wavelet-response features extracted only at corner points, our system achieves good recognition results despite substantial occlusion and background clutter.</description><identifier>ISBN: 9780769522715</identifier><identifier>ISBN: 0769522718</identifier><identifier>DOI: 10.1109/ACVMOT.2005.109</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boosting ; Cognitive science ; Computer vision ; Feature extraction ; Layout ; Object detection ; Object recognition ; Quantization ; Runtime ; Spatial databases</subject><ispartof>2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1, 2005, Vol.1, p.16-21</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4129454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4129454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Murphy-Chutorian, E.</creatorcontrib><creatorcontrib>Triesch, J.</creatorcontrib><title>Shared Features for Scalable Appearance-Based Object Recognition</title><title>2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1</title><addtitle>ACVMOT</addtitle><description>We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between different object models. In contrast to traditional recognition methods that scale linearly with the number of objects, the shared features can be exploited by bottom-up search algorithms which require a constant number of feature comparisons for any number of objects. We demonstrate the feasibility of this approach on a novel database of 50 everyday objects in cluttered real-world scenes. Using Gabor wavelet-response features extracted only at corner points, our system achieves good recognition results despite substantial occlusion and background clutter.</description><subject>Boosting</subject><subject>Cognitive science</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Layout</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Quantization</subject><subject>Runtime</subject><subject>Spatial databases</subject><isbn>9780769522715</isbn><isbn>0769522718</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1KxDAURgMiKGPXLtz0BVrz2yQ7a3FUGCk4o9vhJrnVDrUtSV349hb02xwOHD5CrhktGaP2tm7eX9pDySlV5epnJLPaUF1Zxblm6oJkKZ3oOmFFxc0ludt_QsSQbxGW74gp76aY7z0M4AbM63lGiDB6LO4hrVnrTuiX_BX99DH2Sz-NV-S8gyFh9s8Neds-HJqnYtc-Pjf1rvCcs6XoVCeYl8idoyx4DdRgsKFiqKQWxgsOQVVSOxSBemm5AWcEF04xU4HSYkNu_n57RDzOsf-C-HOUjFuppPgFBI5HeQ</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Murphy-Chutorian, E.</creator><creator>Triesch, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200501</creationdate><title>Shared Features for Scalable Appearance-Based Object Recognition</title><author>Murphy-Chutorian, E. ; Triesch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Boosting</topic><topic>Cognitive science</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Layout</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Quantization</topic><topic>Runtime</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Murphy-Chutorian, E.</creatorcontrib><creatorcontrib>Triesch, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murphy-Chutorian, E.</au><au>Triesch, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shared Features for Scalable Appearance-Based Object Recognition</atitle><btitle>2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1</btitle><stitle>ACVMOT</stitle><date>2005-01</date><risdate>2005</risdate><volume>1</volume><spage>16</spage><epage>21</epage><pages>16-21</pages><isbn>9780769522715</isbn><isbn>0769522718</isbn><abstract>We present a framework for learning object representations for fast recognition of a large number of different objects. Rather than learning and storing feature representations separately for each object, we create a finite set of representative features and share these features within and between different object models. In contrast to traditional recognition methods that scale linearly with the number of objects, the shared features can be exploited by bottom-up search algorithms which require a constant number of feature comparisons for any number of objects. We demonstrate the feasibility of this approach on a novel database of 50 everyday objects in cluttered real-world scenes. Using Gabor wavelet-response features extracted only at corner points, our system achieves good recognition results despite substantial occlusion and background clutter.</abstract><pub>IEEE</pub><doi>10.1109/ACVMOT.2005.109</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769522715 |
ispartof | 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1, 2005, Vol.1, p.16-21 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4129454 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Boosting Cognitive science Computer vision Feature extraction Layout Object detection Object recognition Quantization Runtime Spatial databases |
title | Shared Features for Scalable Appearance-Based Object Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shared%20Features%20for%20Scalable%20Appearance-Based%20Object%20Recognition&rft.btitle=2005%20Seventh%20IEEE%20Workshops%20on%20Applications%20of%20Computer%20Vision%20(WACV/MOTION'05)%20-%20Volume%201&rft.au=Murphy-Chutorian,%20E.&rft.date=2005-01&rft.volume=1&rft.spage=16&rft.epage=21&rft.pages=16-21&rft.isbn=9780769522715&rft.isbn_list=0769522718&rft_id=info:doi/10.1109/ACVMOT.2005.109&rft_dat=%3Cieee_6IE%3E4129454%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-f5f31c4e2bb01dc7a08ed9d61e54738c32ad5647be3d0c4928ab8323b5186a573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4129454&rfr_iscdi=true |