Loading…
A new stochastic model-based image segmentation technique for MR image
A new framework for stochastic MR image modeling is presented based on local randomization, and a new model-based MR image analysis technique is developed in terms of stochastic regularization. By discussing the statistical properties of both pixel image and context image, an inhomogeneous hidden Ma...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 186 vol.2 |
container_issue | |
container_start_page | 182 |
container_title | |
container_volume | 2 |
creator | Yue Wang Tianhu Lei |
description | A new framework for stochastic MR image modeling is presented based on local randomization, and a new model-based MR image analysis technique is developed in terms of stochastic regularization. By discussing the statistical properties of both pixel image and context image, an inhomogeneous hidden Markov random field model is proposed and justified for MR image. The solution of the new problem formulation is implemented with an efficient multistage procedure. The number of image regions is detected by a new information criterion. The parameters in the model are estimated from block-wise classification-maximization and Bayesian maximum likelihood algorithms. The image segmentation is performed via a maximum a posteriori probability classifier. The experimental results with simulated and real MR images are provided to demonstrate the promise and effectiveness of the proposed technique.< > |
doi_str_mv | 10.1109/ICIP.1994.413556 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_413556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>413556</ieee_id><sourcerecordid>413556</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-93140e88823c98898c5fe1c1142d17be946f6712ba84bf508801ece948bc0cc93</originalsourceid><addsrcrecordid>eNotT8FKxDAUDIigrnsXT_mB1rw2TV6OS3G1sKKInpc0fdmNbFttIuLfW6hzGWYYZhjGbkDkAMLcNXXzkoMxMpdQVpU6Y1cCAZUyVaEv2DrGDzFj1gXoS7bd8IF-eEyjO9qYguP92NEpa22kjofeHohHOvQ0JJvCOPBE7jiEr2_ifpz40-uSuWbn3p4irf95xd6392_1Y7Z7fmjqzS4LoGXKTAlSECIWpTOIBl3lCRyALDrQLRmpvNJQtBZl6yuBKIDcbGPrhHOmXLHbpTcQ0f5zmsen3_3ytPwDCAtIow</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new stochastic model-based image segmentation technique for MR image</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yue Wang ; Tianhu Lei</creator><creatorcontrib>Yue Wang ; Tianhu Lei</creatorcontrib><description>A new framework for stochastic MR image modeling is presented based on local randomization, and a new model-based MR image analysis technique is developed in terms of stochastic regularization. By discussing the statistical properties of both pixel image and context image, an inhomogeneous hidden Markov random field model is proposed and justified for MR image. The solution of the new problem formulation is implemented with an efficient multistage procedure. The number of image regions is detected by a new information criterion. The parameters in the model are estimated from block-wise classification-maximization and Bayesian maximum likelihood algorithms. The image segmentation is performed via a maximum a posteriori probability classifier. The experimental results with simulated and real MR images are provided to demonstrate the promise and effectiveness of the proposed technique.< ></description><identifier>ISBN: 0818669527</identifier><identifier>ISBN: 9780818669521</identifier><identifier>DOI: 10.1109/ICIP.1994.413556</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Bayesian methods ; Context modeling ; Hidden Markov models ; Image edge detection ; Image segmentation ; Maximum likelihood detection ; Maximum likelihood estimation ; Parameter estimation ; Pixel ; Stochastic processes</subject><ispartof>Proceedings of 1st International Conference on Image Processing, 1994, Vol.2, p.182-186 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/413556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/413556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yue Wang</creatorcontrib><creatorcontrib>Tianhu Lei</creatorcontrib><title>A new stochastic model-based image segmentation technique for MR image</title><title>Proceedings of 1st International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>A new framework for stochastic MR image modeling is presented based on local randomization, and a new model-based MR image analysis technique is developed in terms of stochastic regularization. By discussing the statistical properties of both pixel image and context image, an inhomogeneous hidden Markov random field model is proposed and justified for MR image. The solution of the new problem formulation is implemented with an efficient multistage procedure. The number of image regions is detected by a new information criterion. The parameters in the model are estimated from block-wise classification-maximization and Bayesian maximum likelihood algorithms. The image segmentation is performed via a maximum a posteriori probability classifier. The experimental results with simulated and real MR images are provided to demonstrate the promise and effectiveness of the proposed technique.< ></description><subject>Bayesian methods</subject><subject>Context modeling</subject><subject>Hidden Markov models</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Pixel</subject><subject>Stochastic processes</subject><isbn>0818669527</isbn><isbn>9780818669521</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8FKxDAUDIigrnsXT_mB1rw2TV6OS3G1sKKInpc0fdmNbFttIuLfW6hzGWYYZhjGbkDkAMLcNXXzkoMxMpdQVpU6Y1cCAZUyVaEv2DrGDzFj1gXoS7bd8IF-eEyjO9qYguP92NEpa22kjofeHohHOvQ0JJvCOPBE7jiEr2_ifpz40-uSuWbn3p4irf95xd6392_1Y7Z7fmjqzS4LoGXKTAlSECIWpTOIBl3lCRyALDrQLRmpvNJQtBZl6yuBKIDcbGPrhHOmXLHbpTcQ0f5zmsen3_3ytPwDCAtIow</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Yue Wang</creator><creator>Tianhu Lei</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>A new stochastic model-based image segmentation technique for MR image</title><author>Yue Wang ; Tianhu Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-93140e88823c98898c5fe1c1142d17be946f6712ba84bf508801ece948bc0cc93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Bayesian methods</topic><topic>Context modeling</topic><topic>Hidden Markov models</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Pixel</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Yue Wang</creatorcontrib><creatorcontrib>Tianhu Lei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yue Wang</au><au>Tianhu Lei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new stochastic model-based image segmentation technique for MR image</atitle><btitle>Proceedings of 1st International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>1994</date><risdate>1994</risdate><volume>2</volume><spage>182</spage><epage>186 vol.2</epage><pages>182-186 vol.2</pages><isbn>0818669527</isbn><isbn>9780818669521</isbn><abstract>A new framework for stochastic MR image modeling is presented based on local randomization, and a new model-based MR image analysis technique is developed in terms of stochastic regularization. By discussing the statistical properties of both pixel image and context image, an inhomogeneous hidden Markov random field model is proposed and justified for MR image. The solution of the new problem formulation is implemented with an efficient multistage procedure. The number of image regions is detected by a new information criterion. The parameters in the model are estimated from block-wise classification-maximization and Bayesian maximum likelihood algorithms. The image segmentation is performed via a maximum a posteriori probability classifier. The experimental results with simulated and real MR images are provided to demonstrate the promise and effectiveness of the proposed technique.< ></abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ICIP.1994.413556</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0818669527 |
ispartof | Proceedings of 1st International Conference on Image Processing, 1994, Vol.2, p.182-186 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_413556 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Context modeling Hidden Markov models Image edge detection Image segmentation Maximum likelihood detection Maximum likelihood estimation Parameter estimation Pixel Stochastic processes |
title | A new stochastic model-based image segmentation technique for MR image |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20stochastic%20model-based%20image%20segmentation%20technique%20for%20MR%20image&rft.btitle=Proceedings%20of%201st%20International%20Conference%20on%20Image%20Processing&rft.au=Yue%20Wang&rft.date=1994&rft.volume=2&rft.spage=182&rft.epage=186%20vol.2&rft.pages=182-186%20vol.2&rft.isbn=0818669527&rft.isbn_list=9780818669521&rft_id=info:doi/10.1109/ICIP.1994.413556&rft_dat=%3Cieee_6IE%3E413556%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i174t-93140e88823c98898c5fe1c1142d17be946f6712ba84bf508801ece948bc0cc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=413556&rfr_iscdi=true |