Loading…
Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems
Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrate...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 366 |
container_issue | |
container_start_page | 361 |
container_title | |
container_volume | |
creator | Bhat, T. Nagappan, N. |
description | Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrates the efficacy of building scalable failure-proneness models based on code complexity metrics across the Microsoft Windows operating system code base. We show the ability of such models to estimate failure-proneness and provide feedback on the complexity metrics to help guide refactoring and the design rework effort. |
doi_str_mv | 10.1109/APSEC.2006.25 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4137438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4137438</ieee_id><sourcerecordid>4137438</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5b98facb4c7c404dfeb4f1ab66c23b07b46e4a9ed25a54066d2284f60e9998b73</originalsourceid><addsrcrecordid>eNotjEtPAjEYRRsfiYgsXbnpH5ix706XOAE1gWiCrEk785XUFIa0Q5R_z_i4i3vP4uYgdE9JSSkxj9P31awuGSGqZPICjZgSpCCaykt0S7QykqlK8is0opKTgnLFbtAk508yhBvFqRih9ukYYhv2W7xqbLQuAp7bEI8JikPq9rCHnPGyayFmvM4_v7rbHSJ8h_6El9Cn0GTsu4QXNm3hVzJ05_svmwY45R52-Q5dexszTP53jNbz2Uf9Uizenl_r6aIIVMu-kM5U3jZONLoRRLQenPDUOqUaxh3RTigQ1kDLpJWCKNUyVgmvCBhjKqf5GD38eQMAbA4p7Gw6bQTlWvCKnwF7p1g-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhat, T. ; Nagappan, N.</creator><creatorcontrib>Bhat, T. ; Nagappan, N.</creatorcontrib><description>Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrates the efficacy of building scalable failure-proneness models based on code complexity metrics across the Microsoft Windows operating system code base. We show the ability of such models to estimate failure-proneness and provide feedback on the complexity metrics to help guide refactoring and the design rework effort.</description><identifier>ISSN: 1530-1362</identifier><identifier>ISBN: 0769526853</identifier><identifier>ISBN: 9780769526850</identifier><identifier>EISSN: 2640-0715</identifier><identifier>DOI: 10.1109/APSEC.2006.25</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Feedback ; Inspection ; Large-scale systems ; Network-on-a-chip ; Object oriented modeling ; Operating systems ; Software quality ; Software systems ; Testing</subject><ispartof>2006 13th Asia Pacific Software Engineering Conference (APSEC'06), 2006, p.361-366</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4137438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54538,54903,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4137438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhat, T.</creatorcontrib><creatorcontrib>Nagappan, N.</creatorcontrib><title>Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems</title><title>2006 13th Asia Pacific Software Engineering Conference (APSEC'06)</title><addtitle>APSEC</addtitle><description>Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrates the efficacy of building scalable failure-proneness models based on code complexity metrics across the Microsoft Windows operating system code base. We show the ability of such models to estimate failure-proneness and provide feedback on the complexity metrics to help guide refactoring and the design rework effort.</description><subject>Buildings</subject><subject>Feedback</subject><subject>Inspection</subject><subject>Large-scale systems</subject><subject>Network-on-a-chip</subject><subject>Object oriented modeling</subject><subject>Operating systems</subject><subject>Software quality</subject><subject>Software systems</subject><subject>Testing</subject><issn>1530-1362</issn><issn>2640-0715</issn><isbn>0769526853</isbn><isbn>9780769526850</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEtPAjEYRRsfiYgsXbnpH5ix706XOAE1gWiCrEk785XUFIa0Q5R_z_i4i3vP4uYgdE9JSSkxj9P31awuGSGqZPICjZgSpCCaykt0S7QykqlK8is0opKTgnLFbtAk508yhBvFqRih9ukYYhv2W7xqbLQuAp7bEI8JikPq9rCHnPGyayFmvM4_v7rbHSJ8h_6El9Cn0GTsu4QXNm3hVzJ05_svmwY45R52-Q5dexszTP53jNbz2Uf9Uizenl_r6aIIVMu-kM5U3jZONLoRRLQenPDUOqUaxh3RTigQ1kDLpJWCKNUyVgmvCBhjKqf5GD38eQMAbA4p7Gw6bQTlWvCKnwF7p1g-</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Bhat, T.</creator><creator>Nagappan, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems</title><author>Bhat, T. ; Nagappan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5b98facb4c7c404dfeb4f1ab66c23b07b46e4a9ed25a54066d2284f60e9998b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Buildings</topic><topic>Feedback</topic><topic>Inspection</topic><topic>Large-scale systems</topic><topic>Network-on-a-chip</topic><topic>Object oriented modeling</topic><topic>Operating systems</topic><topic>Software quality</topic><topic>Software systems</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhat, T.</creatorcontrib><creatorcontrib>Nagappan, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhat, T.</au><au>Nagappan, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems</atitle><btitle>2006 13th Asia Pacific Software Engineering Conference (APSEC'06)</btitle><stitle>APSEC</stitle><date>2006-12</date><risdate>2006</risdate><spage>361</spage><epage>366</epage><pages>361-366</pages><issn>1530-1362</issn><eissn>2640-0715</eissn><isbn>0769526853</isbn><isbn>9780769526850</isbn><abstract>Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrates the efficacy of building scalable failure-proneness models based on code complexity metrics across the Microsoft Windows operating system code base. We show the ability of such models to estimate failure-proneness and provide feedback on the complexity metrics to help guide refactoring and the design rework effort.</abstract><pub>IEEE</pub><doi>10.1109/APSEC.2006.25</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1362 |
ispartof | 2006 13th Asia Pacific Software Engineering Conference (APSEC'06), 2006, p.361-366 |
issn | 1530-1362 2640-0715 |
language | eng |
recordid | cdi_ieee_primary_4137438 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Buildings Feedback Inspection Large-scale systems Network-on-a-chip Object oriented modeling Operating systems Software quality Software systems Testing |
title | Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Building%20Scalable%20Failure-proneness%20Models%20Using%20Complexity%20Metrics%20for%20Large%20Scale%20Software%20Systems&rft.btitle=2006%2013th%20Asia%20Pacific%20Software%20Engineering%20Conference%20(APSEC'06)&rft.au=Bhat,%20T.&rft.date=2006-12&rft.spage=361&rft.epage=366&rft.pages=361-366&rft.issn=1530-1362&rft.eissn=2640-0715&rft.isbn=0769526853&rft.isbn_list=9780769526850&rft_id=info:doi/10.1109/APSEC.2006.25&rft_dat=%3Cieee_6IE%3E4137438%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5b98facb4c7c404dfeb4f1ab66c23b07b46e4a9ed25a54066d2284f60e9998b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4137438&rfr_iscdi=true |