Loading…

Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems

Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrate...

Full description

Saved in:
Bibliographic Details
Main Authors: Bhat, T., Nagappan, N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 366
container_issue
container_start_page 361
container_title
container_volume
creator Bhat, T.
Nagappan, N.
description Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrates the efficacy of building scalable failure-proneness models based on code complexity metrics across the Microsoft Windows operating system code base. We show the ability of such models to estimate failure-proneness and provide feedback on the complexity metrics to help guide refactoring and the design rework effort.
doi_str_mv 10.1109/APSEC.2006.25
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4137438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4137438</ieee_id><sourcerecordid>4137438</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5b98facb4c7c404dfeb4f1ab66c23b07b46e4a9ed25a54066d2284f60e9998b73</originalsourceid><addsrcrecordid>eNotjEtPAjEYRRsfiYgsXbnpH5ix706XOAE1gWiCrEk785XUFIa0Q5R_z_i4i3vP4uYgdE9JSSkxj9P31awuGSGqZPICjZgSpCCaykt0S7QykqlK8is0opKTgnLFbtAk508yhBvFqRih9ukYYhv2W7xqbLQuAp7bEI8JikPq9rCHnPGyayFmvM4_v7rbHSJ8h_6El9Cn0GTsu4QXNm3hVzJ05_svmwY45R52-Q5dexszTP53jNbz2Uf9Uizenl_r6aIIVMu-kM5U3jZONLoRRLQenPDUOqUaxh3RTigQ1kDLpJWCKNUyVgmvCBhjKqf5GD38eQMAbA4p7Gw6bQTlWvCKnwF7p1g-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhat, T. ; Nagappan, N.</creator><creatorcontrib>Bhat, T. ; Nagappan, N.</creatorcontrib><description>Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrates the efficacy of building scalable failure-proneness models based on code complexity metrics across the Microsoft Windows operating system code base. We show the ability of such models to estimate failure-proneness and provide feedback on the complexity metrics to help guide refactoring and the design rework effort.</description><identifier>ISSN: 1530-1362</identifier><identifier>ISBN: 0769526853</identifier><identifier>ISBN: 9780769526850</identifier><identifier>EISSN: 2640-0715</identifier><identifier>DOI: 10.1109/APSEC.2006.25</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Feedback ; Inspection ; Large-scale systems ; Network-on-a-chip ; Object oriented modeling ; Operating systems ; Software quality ; Software systems ; Testing</subject><ispartof>2006 13th Asia Pacific Software Engineering Conference (APSEC'06), 2006, p.361-366</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4137438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54538,54903,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4137438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhat, T.</creatorcontrib><creatorcontrib>Nagappan, N.</creatorcontrib><title>Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems</title><title>2006 13th Asia Pacific Software Engineering Conference (APSEC'06)</title><addtitle>APSEC</addtitle><description>Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrates the efficacy of building scalable failure-proneness models based on code complexity metrics across the Microsoft Windows operating system code base. We show the ability of such models to estimate failure-proneness and provide feedback on the complexity metrics to help guide refactoring and the design rework effort.</description><subject>Buildings</subject><subject>Feedback</subject><subject>Inspection</subject><subject>Large-scale systems</subject><subject>Network-on-a-chip</subject><subject>Object oriented modeling</subject><subject>Operating systems</subject><subject>Software quality</subject><subject>Software systems</subject><subject>Testing</subject><issn>1530-1362</issn><issn>2640-0715</issn><isbn>0769526853</isbn><isbn>9780769526850</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEtPAjEYRRsfiYgsXbnpH5ix706XOAE1gWiCrEk785XUFIa0Q5R_z_i4i3vP4uYgdE9JSSkxj9P31awuGSGqZPICjZgSpCCaykt0S7QykqlK8is0opKTgnLFbtAk508yhBvFqRih9ukYYhv2W7xqbLQuAp7bEI8JikPq9rCHnPGyayFmvM4_v7rbHSJ8h_6El9Cn0GTsu4QXNm3hVzJ05_svmwY45R52-Q5dexszTP53jNbz2Uf9Uizenl_r6aIIVMu-kM5U3jZONLoRRLQenPDUOqUaxh3RTigQ1kDLpJWCKNUyVgmvCBhjKqf5GD38eQMAbA4p7Gw6bQTlWvCKnwF7p1g-</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Bhat, T.</creator><creator>Nagappan, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems</title><author>Bhat, T. ; Nagappan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5b98facb4c7c404dfeb4f1ab66c23b07b46e4a9ed25a54066d2284f60e9998b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Buildings</topic><topic>Feedback</topic><topic>Inspection</topic><topic>Large-scale systems</topic><topic>Network-on-a-chip</topic><topic>Object oriented modeling</topic><topic>Operating systems</topic><topic>Software quality</topic><topic>Software systems</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhat, T.</creatorcontrib><creatorcontrib>Nagappan, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhat, T.</au><au>Nagappan, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems</atitle><btitle>2006 13th Asia Pacific Software Engineering Conference (APSEC'06)</btitle><stitle>APSEC</stitle><date>2006-12</date><risdate>2006</risdate><spage>361</spage><epage>366</epage><pages>361-366</pages><issn>1530-1362</issn><eissn>2640-0715</eissn><isbn>0769526853</isbn><isbn>9780769526850</isbn><abstract>Building statistical models for estimating failure-proneness of systems can help software organizations make early decisions on the quality of their systems. Such early estimates can be used to help inform decisions on testing, refactoring, code inspections, design rework etc. This paper demonstrates the efficacy of building scalable failure-proneness models based on code complexity metrics across the Microsoft Windows operating system code base. We show the ability of such models to estimate failure-proneness and provide feedback on the complexity metrics to help guide refactoring and the design rework effort.</abstract><pub>IEEE</pub><doi>10.1109/APSEC.2006.25</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1362
ispartof 2006 13th Asia Pacific Software Engineering Conference (APSEC'06), 2006, p.361-366
issn 1530-1362
2640-0715
language eng
recordid cdi_ieee_primary_4137438
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Buildings
Feedback
Inspection
Large-scale systems
Network-on-a-chip
Object oriented modeling
Operating systems
Software quality
Software systems
Testing
title Building Scalable Failure-proneness Models Using Complexity Metrics for Large Scale Software Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Building%20Scalable%20Failure-proneness%20Models%20Using%20Complexity%20Metrics%20for%20Large%20Scale%20Software%20Systems&rft.btitle=2006%2013th%20Asia%20Pacific%20Software%20Engineering%20Conference%20(APSEC'06)&rft.au=Bhat,%20T.&rft.date=2006-12&rft.spage=361&rft.epage=366&rft.pages=361-366&rft.issn=1530-1362&rft.eissn=2640-0715&rft.isbn=0769526853&rft.isbn_list=9780769526850&rft_id=info:doi/10.1109/APSEC.2006.25&rft_dat=%3Cieee_6IE%3E4137438%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5b98facb4c7c404dfeb4f1ab66c23b07b46e4a9ed25a54066d2284f60e9998b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4137438&rfr_iscdi=true