Loading…

3D Grasp Synthesis Based on Object Exploration

Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upo...

Full description

Saved in:
Bibliographic Details
Main Authors: Chinellato, E., Recatala, G., del Pobil, A.P., Mezouar, Y., Martinet, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1070
container_issue
container_start_page 1065
container_title
container_volume
creator Chinellato, E.
Recatala, G.
del Pobil, A.P.
Mezouar, Y.
Martinet, P.
description Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upon an architecture that allows its scalability and its integration within more complex tasks. The grasp synthesis is designed as integrated with the extraction of a 3D object description, so that the object visual analysis is driven by the needs of the grasp synthesis: visual reconstruction is performed incrementally and selectively on the regions of the object that are considered more interesting for grasping. Our approach, inspired by the efficiency of our visual cortex, allows for an easy integration of additional modules and different grasp synthesis criteria.
doi_str_mv 10.1109/ROBIO.2006.340076
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4142013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4142013</ieee_id><sourcerecordid>4142013</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aaa08bd6a9789f167b84de2da23ac95233ea019c560bb352e00e7f97444622e73</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUdEUGseQNzMCyTe-c8sbW1roRDwZ13uJDc4pSYhk4V9ewPq2Ry-zfk4jN0LKIQA__haLXdVIQFsoTSAsxfsVmipNRgnykuWeVf-M4hrlqV0hDnKW2nkDSvUM9-OmAb-du6mT0ox8SUmanjf8SocqZ74-ns49SNOse_u2FWLp0TZXy_Yx2b9vnrJ99V2t3ra51E4M-WICGVoLM523wrrQqkbkg1KhbU3UilCEL42FkJQRhIAudY7rbWVkpxasIff3UhEh2GMXzieD3p-AkKpH1TfQqA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3D Grasp Synthesis Based on Object Exploration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chinellato, E. ; Recatala, G. ; del Pobil, A.P. ; Mezouar, Y. ; Martinet, P.</creator><creatorcontrib>Chinellato, E. ; Recatala, G. ; del Pobil, A.P. ; Mezouar, Y. ; Martinet, P.</creatorcontrib><description>Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upon an architecture that allows its scalability and its integration within more complex tasks. The grasp synthesis is designed as integrated with the extraction of a 3D object description, so that the object visual analysis is driven by the needs of the grasp synthesis: visual reconstruction is performed incrementally and selectively on the regions of the object that are considered more interesting for grasping. Our approach, inspired by the efficiency of our visual cortex, allows for an easy integration of additional modules and different grasp synthesis criteria.</description><identifier>ISBN: 9781424405701</identifier><identifier>ISBN: 142440570X</identifier><identifier>EISBN: 1424405718</identifier><identifier>EISBN: 9781424405718</identifier><identifier>DOI: 10.1109/ROBIO.2006.340076</identifier><language>eng</language><publisher>IEEE</publisher><subject>active perception ; biologically-inspired robots ; Biomimetics ; biomimicking robots/systems ; Brain modeling ; Computer science ; grasping/dexterous manipulation ; Humans ; Intelligent robots ; Neurophysiology ; Neuroscience ; Performance analysis ; robot vision ; Robot vision systems ; Scalability</subject><ispartof>2006 IEEE International Conference on Robotics and Biomimetics, 2006, p.1065-1070</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4142013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4142013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chinellato, E.</creatorcontrib><creatorcontrib>Recatala, G.</creatorcontrib><creatorcontrib>del Pobil, A.P.</creatorcontrib><creatorcontrib>Mezouar, Y.</creatorcontrib><creatorcontrib>Martinet, P.</creatorcontrib><title>3D Grasp Synthesis Based on Object Exploration</title><title>2006 IEEE International Conference on Robotics and Biomimetics</title><addtitle>ROBIO</addtitle><description>Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upon an architecture that allows its scalability and its integration within more complex tasks. The grasp synthesis is designed as integrated with the extraction of a 3D object description, so that the object visual analysis is driven by the needs of the grasp synthesis: visual reconstruction is performed incrementally and selectively on the regions of the object that are considered more interesting for grasping. Our approach, inspired by the efficiency of our visual cortex, allows for an easy integration of additional modules and different grasp synthesis criteria.</description><subject>active perception</subject><subject>biologically-inspired robots</subject><subject>Biomimetics</subject><subject>biomimicking robots/systems</subject><subject>Brain modeling</subject><subject>Computer science</subject><subject>grasping/dexterous manipulation</subject><subject>Humans</subject><subject>Intelligent robots</subject><subject>Neurophysiology</subject><subject>Neuroscience</subject><subject>Performance analysis</subject><subject>robot vision</subject><subject>Robot vision systems</subject><subject>Scalability</subject><isbn>9781424405701</isbn><isbn>142440570X</isbn><isbn>1424405718</isbn><isbn>9781424405718</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AUhUdEUGseQNzMCyTe-c8sbW1roRDwZ13uJDc4pSYhk4V9ewPq2Ry-zfk4jN0LKIQA__haLXdVIQFsoTSAsxfsVmipNRgnykuWeVf-M4hrlqV0hDnKW2nkDSvUM9-OmAb-du6mT0ox8SUmanjf8SocqZ74-ns49SNOse_u2FWLp0TZXy_Yx2b9vnrJ99V2t3ra51E4M-WICGVoLM523wrrQqkbkg1KhbU3UilCEL42FkJQRhIAudY7rbWVkpxasIff3UhEh2GMXzieD3p-AkKpH1TfQqA</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Chinellato, E.</creator><creator>Recatala, G.</creator><creator>del Pobil, A.P.</creator><creator>Mezouar, Y.</creator><creator>Martinet, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>3D Grasp Synthesis Based on Object Exploration</title><author>Chinellato, E. ; Recatala, G. ; del Pobil, A.P. ; Mezouar, Y. ; Martinet, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aaa08bd6a9789f167b84de2da23ac95233ea019c560bb352e00e7f97444622e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>active perception</topic><topic>biologically-inspired robots</topic><topic>Biomimetics</topic><topic>biomimicking robots/systems</topic><topic>Brain modeling</topic><topic>Computer science</topic><topic>grasping/dexterous manipulation</topic><topic>Humans</topic><topic>Intelligent robots</topic><topic>Neurophysiology</topic><topic>Neuroscience</topic><topic>Performance analysis</topic><topic>robot vision</topic><topic>Robot vision systems</topic><topic>Scalability</topic><toplevel>online_resources</toplevel><creatorcontrib>Chinellato, E.</creatorcontrib><creatorcontrib>Recatala, G.</creatorcontrib><creatorcontrib>del Pobil, A.P.</creatorcontrib><creatorcontrib>Mezouar, Y.</creatorcontrib><creatorcontrib>Martinet, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chinellato, E.</au><au>Recatala, G.</au><au>del Pobil, A.P.</au><au>Mezouar, Y.</au><au>Martinet, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3D Grasp Synthesis Based on Object Exploration</atitle><btitle>2006 IEEE International Conference on Robotics and Biomimetics</btitle><stitle>ROBIO</stitle><date>2006-12</date><risdate>2006</risdate><spage>1065</spage><epage>1070</epage><pages>1065-1070</pages><isbn>9781424405701</isbn><isbn>142440570X</isbn><eisbn>1424405718</eisbn><eisbn>9781424405718</eisbn><abstract>Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upon an architecture that allows its scalability and its integration within more complex tasks. The grasp synthesis is designed as integrated with the extraction of a 3D object description, so that the object visual analysis is driven by the needs of the grasp synthesis: visual reconstruction is performed incrementally and selectively on the regions of the object that are considered more interesting for grasping. Our approach, inspired by the efficiency of our visual cortex, allows for an easy integration of additional modules and different grasp synthesis criteria.</abstract><pub>IEEE</pub><doi>10.1109/ROBIO.2006.340076</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424405701
ispartof 2006 IEEE International Conference on Robotics and Biomimetics, 2006, p.1065-1070
issn
language eng
recordid cdi_ieee_primary_4142013
source IEEE Electronic Library (IEL) Conference Proceedings
subjects active perception
biologically-inspired robots
Biomimetics
biomimicking robots/systems
Brain modeling
Computer science
grasping/dexterous manipulation
Humans
Intelligent robots
Neurophysiology
Neuroscience
Performance analysis
robot vision
Robot vision systems
Scalability
title 3D Grasp Synthesis Based on Object Exploration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3D%20Grasp%20Synthesis%20Based%20on%20Object%20Exploration&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Robotics%20and%20Biomimetics&rft.au=Chinellato,%20E.&rft.date=2006-12&rft.spage=1065&rft.epage=1070&rft.pages=1065-1070&rft.isbn=9781424405701&rft.isbn_list=142440570X&rft_id=info:doi/10.1109/ROBIO.2006.340076&rft.eisbn=1424405718&rft.eisbn_list=9781424405718&rft_dat=%3Cieee_6IE%3E4142013%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-aaa08bd6a9789f167b84de2da23ac95233ea019c560bb352e00e7f97444622e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4142013&rfr_iscdi=true