Loading…
3D Grasp Synthesis Based on Object Exploration
Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upo...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1070 |
container_issue | |
container_start_page | 1065 |
container_title | |
container_volume | |
creator | Chinellato, E. Recatala, G. del Pobil, A.P. Mezouar, Y. Martinet, P. |
description | Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upon an architecture that allows its scalability and its integration within more complex tasks. The grasp synthesis is designed as integrated with the extraction of a 3D object description, so that the object visual analysis is driven by the needs of the grasp synthesis: visual reconstruction is performed incrementally and selectively on the regions of the object that are considered more interesting for grasping. Our approach, inspired by the efficiency of our visual cortex, allows for an easy integration of additional modules and different grasp synthesis criteria. |
doi_str_mv | 10.1109/ROBIO.2006.340076 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4142013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4142013</ieee_id><sourcerecordid>4142013</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aaa08bd6a9789f167b84de2da23ac95233ea019c560bb352e00e7f97444622e73</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUdEUGseQNzMCyTe-c8sbW1roRDwZ13uJDc4pSYhk4V9ewPq2Ry-zfk4jN0LKIQA__haLXdVIQFsoTSAsxfsVmipNRgnykuWeVf-M4hrlqV0hDnKW2nkDSvUM9-OmAb-du6mT0ox8SUmanjf8SocqZ74-ns49SNOse_u2FWLp0TZXy_Yx2b9vnrJ99V2t3ra51E4M-WICGVoLM523wrrQqkbkg1KhbU3UilCEL42FkJQRhIAudY7rbWVkpxasIff3UhEh2GMXzieD3p-AkKpH1TfQqA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3D Grasp Synthesis Based on Object Exploration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chinellato, E. ; Recatala, G. ; del Pobil, A.P. ; Mezouar, Y. ; Martinet, P.</creator><creatorcontrib>Chinellato, E. ; Recatala, G. ; del Pobil, A.P. ; Mezouar, Y. ; Martinet, P.</creatorcontrib><description>Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upon an architecture that allows its scalability and its integration within more complex tasks. The grasp synthesis is designed as integrated with the extraction of a 3D object description, so that the object visual analysis is driven by the needs of the grasp synthesis: visual reconstruction is performed incrementally and selectively on the regions of the object that are considered more interesting for grasping. Our approach, inspired by the efficiency of our visual cortex, allows for an easy integration of additional modules and different grasp synthesis criteria.</description><identifier>ISBN: 9781424405701</identifier><identifier>ISBN: 142440570X</identifier><identifier>EISBN: 1424405718</identifier><identifier>EISBN: 9781424405718</identifier><identifier>DOI: 10.1109/ROBIO.2006.340076</identifier><language>eng</language><publisher>IEEE</publisher><subject>active perception ; biologically-inspired robots ; Biomimetics ; biomimicking robots/systems ; Brain modeling ; Computer science ; grasping/dexterous manipulation ; Humans ; Intelligent robots ; Neurophysiology ; Neuroscience ; Performance analysis ; robot vision ; Robot vision systems ; Scalability</subject><ispartof>2006 IEEE International Conference on Robotics and Biomimetics, 2006, p.1065-1070</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4142013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4142013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chinellato, E.</creatorcontrib><creatorcontrib>Recatala, G.</creatorcontrib><creatorcontrib>del Pobil, A.P.</creatorcontrib><creatorcontrib>Mezouar, Y.</creatorcontrib><creatorcontrib>Martinet, P.</creatorcontrib><title>3D Grasp Synthesis Based on Object Exploration</title><title>2006 IEEE International Conference on Robotics and Biomimetics</title><addtitle>ROBIO</addtitle><description>Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upon an architecture that allows its scalability and its integration within more complex tasks. The grasp synthesis is designed as integrated with the extraction of a 3D object description, so that the object visual analysis is driven by the needs of the grasp synthesis: visual reconstruction is performed incrementally and selectively on the regions of the object that are considered more interesting for grasping. Our approach, inspired by the efficiency of our visual cortex, allows for an easy integration of additional modules and different grasp synthesis criteria.</description><subject>active perception</subject><subject>biologically-inspired robots</subject><subject>Biomimetics</subject><subject>biomimicking robots/systems</subject><subject>Brain modeling</subject><subject>Computer science</subject><subject>grasping/dexterous manipulation</subject><subject>Humans</subject><subject>Intelligent robots</subject><subject>Neurophysiology</subject><subject>Neuroscience</subject><subject>Performance analysis</subject><subject>robot vision</subject><subject>Robot vision systems</subject><subject>Scalability</subject><isbn>9781424405701</isbn><isbn>142440570X</isbn><isbn>1424405718</isbn><isbn>9781424405718</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AUhUdEUGseQNzMCyTe-c8sbW1roRDwZ13uJDc4pSYhk4V9ewPq2Ry-zfk4jN0LKIQA__haLXdVIQFsoTSAsxfsVmipNRgnykuWeVf-M4hrlqV0hDnKW2nkDSvUM9-OmAb-du6mT0ox8SUmanjf8SocqZ74-ns49SNOse_u2FWLp0TZXy_Yx2b9vnrJ99V2t3ra51E4M-WICGVoLM523wrrQqkbkg1KhbU3UilCEL42FkJQRhIAudY7rbWVkpxasIff3UhEh2GMXzieD3p-AkKpH1TfQqA</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Chinellato, E.</creator><creator>Recatala, G.</creator><creator>del Pobil, A.P.</creator><creator>Mezouar, Y.</creator><creator>Martinet, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>3D Grasp Synthesis Based on Object Exploration</title><author>Chinellato, E. ; Recatala, G. ; del Pobil, A.P. ; Mezouar, Y. ; Martinet, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aaa08bd6a9789f167b84de2da23ac95233ea019c560bb352e00e7f97444622e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>active perception</topic><topic>biologically-inspired robots</topic><topic>Biomimetics</topic><topic>biomimicking robots/systems</topic><topic>Brain modeling</topic><topic>Computer science</topic><topic>grasping/dexterous manipulation</topic><topic>Humans</topic><topic>Intelligent robots</topic><topic>Neurophysiology</topic><topic>Neuroscience</topic><topic>Performance analysis</topic><topic>robot vision</topic><topic>Robot vision systems</topic><topic>Scalability</topic><toplevel>online_resources</toplevel><creatorcontrib>Chinellato, E.</creatorcontrib><creatorcontrib>Recatala, G.</creatorcontrib><creatorcontrib>del Pobil, A.P.</creatorcontrib><creatorcontrib>Mezouar, Y.</creatorcontrib><creatorcontrib>Martinet, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chinellato, E.</au><au>Recatala, G.</au><au>del Pobil, A.P.</au><au>Mezouar, Y.</au><au>Martinet, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3D Grasp Synthesis Based on Object Exploration</atitle><btitle>2006 IEEE International Conference on Robotics and Biomimetics</btitle><stitle>ROBIO</stitle><date>2006-12</date><risdate>2006</risdate><spage>1065</spage><epage>1070</epage><pages>1065-1070</pages><isbn>9781424405701</isbn><isbn>142440570X</isbn><eisbn>1424405718</eisbn><eisbn>9781424405718</eisbn><abstract>Many approaches to robotic grasping have focused on a specific aspect of the problem only, without considering its integrability with other related procedures in order to build a more complex task. The model for grasp synthesis presented in this paper, inspired on human neurophysiology, is built upon an architecture that allows its scalability and its integration within more complex tasks. The grasp synthesis is designed as integrated with the extraction of a 3D object description, so that the object visual analysis is driven by the needs of the grasp synthesis: visual reconstruction is performed incrementally and selectively on the regions of the object that are considered more interesting for grasping. Our approach, inspired by the efficiency of our visual cortex, allows for an easy integration of additional modules and different grasp synthesis criteria.</abstract><pub>IEEE</pub><doi>10.1109/ROBIO.2006.340076</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424405701 |
ispartof | 2006 IEEE International Conference on Robotics and Biomimetics, 2006, p.1065-1070 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4142013 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | active perception biologically-inspired robots Biomimetics biomimicking robots/systems Brain modeling Computer science grasping/dexterous manipulation Humans Intelligent robots Neurophysiology Neuroscience Performance analysis robot vision Robot vision systems Scalability |
title | 3D Grasp Synthesis Based on Object Exploration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3D%20Grasp%20Synthesis%20Based%20on%20Object%20Exploration&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Robotics%20and%20Biomimetics&rft.au=Chinellato,%20E.&rft.date=2006-12&rft.spage=1065&rft.epage=1070&rft.pages=1065-1070&rft.isbn=9781424405701&rft.isbn_list=142440570X&rft_id=info:doi/10.1109/ROBIO.2006.340076&rft.eisbn=1424405718&rft.eisbn_list=9781424405718&rft_dat=%3Cieee_6IE%3E4142013%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-aaa08bd6a9789f167b84de2da23ac95233ea019c560bb352e00e7f97444622e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4142013&rfr_iscdi=true |