Loading…

Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System

A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent s...

Full description

Saved in:
Bibliographic Details
Main Authors: Patra, J.C., Han Yang Lee, Meher, P.K., Ee Luang Ang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Patra, J.C.
Han Yang Lee
Meher, P.K.
Ee Luang Ang
description A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent sensor system which has the ability to mitigate the nonlinear influence on the sensor output by external disturbances. Training is performed on the neural network to approximate the response characteristics of a sensor for different level of disturbances so as to compensate for the nonlinearity. The intelligent sensor system is implemented on Celoxica RC203E development board which contains a Xilinx Virtex-II FPGA chip. A custom-built intelligent light intensity sensor is used for experimentation and the neural network is able to achieve a maximum full-scale (FS) error of plusmn1.5% under the nonlinear influence caused by the varying distance between the sensor and the light source. In terms of root mean squared error (RMSE), it is able to achieve a RMSE of 0.0052
doi_str_mv 10.1109/ICARCV.2006.345341
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4150182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4150182</ieee_id><sourcerecordid>4150182</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-577a6c8ed8e508aa05db4988d311e694e60347147ce64d7c997cba8665f450e13</originalsourceid><addsrcrecordid>eNotjs1Kw0AUhQdEUGtfQDfzAolzMz-ZWZZga6Go2OK23iQ3JTpJymRE8vYG9Gy-szgcPsbuQKQAwj1si9Vb8Z5mQphUKi0VXLAbUJlSYu7yii3H8VPMkU4ByGv2sW7J1_w1DKeAXYelJ77BSHwVAk582509ddRHjO3Q86HhyJ_pO6CfEX-G8JWUOFLNt30k79vTPOV76sch8P00Rupu2WWDfqTlPxfssH48FE_J7mUz2-6S1omY6DxHU1mqLWlhEYWuS-WsrSUAGafIzP45qLwio-q8ci6vSrTG6EZpQSAX7P7vtiWi4zm0HYbpqEALsJn8BfEuUtM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Patra, J.C. ; Han Yang Lee ; Meher, P.K. ; Ee Luang Ang</creator><creatorcontrib>Patra, J.C. ; Han Yang Lee ; Meher, P.K. ; Ee Luang Ang</creatorcontrib><description>A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent sensor system which has the ability to mitigate the nonlinear influence on the sensor output by external disturbances. Training is performed on the neural network to approximate the response characteristics of a sensor for different level of disturbances so as to compensate for the nonlinearity. The intelligent sensor system is implemented on Celoxica RC203E development board which contains a Xilinx Virtex-II FPGA chip. A custom-built intelligent light intensity sensor is used for experimentation and the neural network is able to achieve a maximum full-scale (FS) error of plusmn1.5% under the nonlinear influence caused by the varying distance between the sensor and the light source. In terms of root mean squared error (RMSE), it is able to achieve a RMSE of 0.0052</description><identifier>ISBN: 1424403413</identifier><identifier>ISBN: 9781424403417</identifier><identifier>DOI: 10.1109/ICARCV.2006.345341</identifier><language>eng</language><publisher>IEEE</publisher><subject>Field programmable gate arrays ; FPGA ; Intelligent networks ; intelligent sensor ; Intelligent sensors ; Light sources ; Multi-layer neural network ; Multilayer perceptrons ; Neural networks ; Sensor arrays ; Sensor phenomena and characterization ; Sensor systems</subject><ispartof>2006 9th International Conference on Control, Automation, Robotics and Vision, 2006, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4150182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4150182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Patra, J.C.</creatorcontrib><creatorcontrib>Han Yang Lee</creatorcontrib><creatorcontrib>Meher, P.K.</creatorcontrib><creatorcontrib>Ee Luang Ang</creatorcontrib><title>Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System</title><title>2006 9th International Conference on Control, Automation, Robotics and Vision</title><addtitle>ICARCV</addtitle><description>A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent sensor system which has the ability to mitigate the nonlinear influence on the sensor output by external disturbances. Training is performed on the neural network to approximate the response characteristics of a sensor for different level of disturbances so as to compensate for the nonlinearity. The intelligent sensor system is implemented on Celoxica RC203E development board which contains a Xilinx Virtex-II FPGA chip. A custom-built intelligent light intensity sensor is used for experimentation and the neural network is able to achieve a maximum full-scale (FS) error of plusmn1.5% under the nonlinear influence caused by the varying distance between the sensor and the light source. In terms of root mean squared error (RMSE), it is able to achieve a RMSE of 0.0052</description><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Intelligent networks</subject><subject>intelligent sensor</subject><subject>Intelligent sensors</subject><subject>Light sources</subject><subject>Multi-layer neural network</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Sensor arrays</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><isbn>1424403413</isbn><isbn>9781424403417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1Kw0AUhQdEUGtfQDfzAolzMz-ZWZZga6Go2OK23iQ3JTpJymRE8vYG9Gy-szgcPsbuQKQAwj1si9Vb8Z5mQphUKi0VXLAbUJlSYu7yii3H8VPMkU4ByGv2sW7J1_w1DKeAXYelJ77BSHwVAk582509ddRHjO3Q86HhyJ_pO6CfEX-G8JWUOFLNt30k79vTPOV76sch8P00Rupu2WWDfqTlPxfssH48FE_J7mUz2-6S1omY6DxHU1mqLWlhEYWuS-WsrSUAGafIzP45qLwio-q8ci6vSrTG6EZpQSAX7P7vtiWi4zm0HYbpqEALsJn8BfEuUtM</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Patra, J.C.</creator><creator>Han Yang Lee</creator><creator>Meher, P.K.</creator><creator>Ee Luang Ang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System</title><author>Patra, J.C. ; Han Yang Lee ; Meher, P.K. ; Ee Luang Ang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-577a6c8ed8e508aa05db4988d311e694e60347147ce64d7c997cba8665f450e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Intelligent networks</topic><topic>intelligent sensor</topic><topic>Intelligent sensors</topic><topic>Light sources</topic><topic>Multi-layer neural network</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Sensor arrays</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Patra, J.C.</creatorcontrib><creatorcontrib>Han Yang Lee</creatorcontrib><creatorcontrib>Meher, P.K.</creatorcontrib><creatorcontrib>Ee Luang Ang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patra, J.C.</au><au>Han Yang Lee</au><au>Meher, P.K.</au><au>Ee Luang Ang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System</atitle><btitle>2006 9th International Conference on Control, Automation, Robotics and Vision</btitle><stitle>ICARCV</stitle><date>2006-12</date><risdate>2006</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424403413</isbn><isbn>9781424403417</isbn><abstract>A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent sensor system which has the ability to mitigate the nonlinear influence on the sensor output by external disturbances. Training is performed on the neural network to approximate the response characteristics of a sensor for different level of disturbances so as to compensate for the nonlinearity. The intelligent sensor system is implemented on Celoxica RC203E development board which contains a Xilinx Virtex-II FPGA chip. A custom-built intelligent light intensity sensor is used for experimentation and the neural network is able to achieve a maximum full-scale (FS) error of plusmn1.5% under the nonlinear influence caused by the varying distance between the sensor and the light source. In terms of root mean squared error (RMSE), it is able to achieve a RMSE of 0.0052</abstract><pub>IEEE</pub><doi>10.1109/ICARCV.2006.345341</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424403413
ispartof 2006 9th International Conference on Control, Automation, Robotics and Vision, 2006, p.1-5
issn
language eng
recordid cdi_ieee_primary_4150182
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Field programmable gate arrays
FPGA
Intelligent networks
intelligent sensor
Intelligent sensors
Light sources
Multi-layer neural network
Multilayer perceptrons
Neural networks
Sensor arrays
Sensor phenomena and characterization
Sensor systems
title Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Field%20Programmable%20Gate%20Array%20Implementation%20of%20a%20Neural%20Network-based%20Intelligent%20Sensor%20System&rft.btitle=2006%209th%20International%20Conference%20on%20Control,%20Automation,%20Robotics%20and%20Vision&rft.au=Patra,%20J.C.&rft.date=2006-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424403413&rft.isbn_list=9781424403417&rft_id=info:doi/10.1109/ICARCV.2006.345341&rft_dat=%3Cieee_6IE%3E4150182%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-577a6c8ed8e508aa05db4988d311e694e60347147ce64d7c997cba8665f450e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4150182&rfr_iscdi=true