Loading…
Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System
A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent s...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Patra, J.C. Han Yang Lee Meher, P.K. Ee Luang Ang |
description | A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent sensor system which has the ability to mitigate the nonlinear influence on the sensor output by external disturbances. Training is performed on the neural network to approximate the response characteristics of a sensor for different level of disturbances so as to compensate for the nonlinearity. The intelligent sensor system is implemented on Celoxica RC203E development board which contains a Xilinx Virtex-II FPGA chip. A custom-built intelligent light intensity sensor is used for experimentation and the neural network is able to achieve a maximum full-scale (FS) error of plusmn1.5% under the nonlinear influence caused by the varying distance between the sensor and the light source. In terms of root mean squared error (RMSE), it is able to achieve a RMSE of 0.0052 |
doi_str_mv | 10.1109/ICARCV.2006.345341 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4150182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4150182</ieee_id><sourcerecordid>4150182</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-577a6c8ed8e508aa05db4988d311e694e60347147ce64d7c997cba8665f450e13</originalsourceid><addsrcrecordid>eNotjs1Kw0AUhQdEUGtfQDfzAolzMz-ZWZZga6Go2OK23iQ3JTpJymRE8vYG9Gy-szgcPsbuQKQAwj1si9Vb8Z5mQphUKi0VXLAbUJlSYu7yii3H8VPMkU4ByGv2sW7J1_w1DKeAXYelJ77BSHwVAk582509ddRHjO3Q86HhyJ_pO6CfEX-G8JWUOFLNt30k79vTPOV76sch8P00Rupu2WWDfqTlPxfssH48FE_J7mUz2-6S1omY6DxHU1mqLWlhEYWuS-WsrSUAGafIzP45qLwio-q8ci6vSrTG6EZpQSAX7P7vtiWi4zm0HYbpqEALsJn8BfEuUtM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Patra, J.C. ; Han Yang Lee ; Meher, P.K. ; Ee Luang Ang</creator><creatorcontrib>Patra, J.C. ; Han Yang Lee ; Meher, P.K. ; Ee Luang Ang</creatorcontrib><description>A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent sensor system which has the ability to mitigate the nonlinear influence on the sensor output by external disturbances. Training is performed on the neural network to approximate the response characteristics of a sensor for different level of disturbances so as to compensate for the nonlinearity. The intelligent sensor system is implemented on Celoxica RC203E development board which contains a Xilinx Virtex-II FPGA chip. A custom-built intelligent light intensity sensor is used for experimentation and the neural network is able to achieve a maximum full-scale (FS) error of plusmn1.5% under the nonlinear influence caused by the varying distance between the sensor and the light source. In terms of root mean squared error (RMSE), it is able to achieve a RMSE of 0.0052</description><identifier>ISBN: 1424403413</identifier><identifier>ISBN: 9781424403417</identifier><identifier>DOI: 10.1109/ICARCV.2006.345341</identifier><language>eng</language><publisher>IEEE</publisher><subject>Field programmable gate arrays ; FPGA ; Intelligent networks ; intelligent sensor ; Intelligent sensors ; Light sources ; Multi-layer neural network ; Multilayer perceptrons ; Neural networks ; Sensor arrays ; Sensor phenomena and characterization ; Sensor systems</subject><ispartof>2006 9th International Conference on Control, Automation, Robotics and Vision, 2006, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4150182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4150182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Patra, J.C.</creatorcontrib><creatorcontrib>Han Yang Lee</creatorcontrib><creatorcontrib>Meher, P.K.</creatorcontrib><creatorcontrib>Ee Luang Ang</creatorcontrib><title>Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System</title><title>2006 9th International Conference on Control, Automation, Robotics and Vision</title><addtitle>ICARCV</addtitle><description>A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent sensor system which has the ability to mitigate the nonlinear influence on the sensor output by external disturbances. Training is performed on the neural network to approximate the response characteristics of a sensor for different level of disturbances so as to compensate for the nonlinearity. The intelligent sensor system is implemented on Celoxica RC203E development board which contains a Xilinx Virtex-II FPGA chip. A custom-built intelligent light intensity sensor is used for experimentation and the neural network is able to achieve a maximum full-scale (FS) error of plusmn1.5% under the nonlinear influence caused by the varying distance between the sensor and the light source. In terms of root mean squared error (RMSE), it is able to achieve a RMSE of 0.0052</description><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Intelligent networks</subject><subject>intelligent sensor</subject><subject>Intelligent sensors</subject><subject>Light sources</subject><subject>Multi-layer neural network</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Sensor arrays</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><isbn>1424403413</isbn><isbn>9781424403417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1Kw0AUhQdEUGtfQDfzAolzMz-ZWZZga6Go2OK23iQ3JTpJymRE8vYG9Gy-szgcPsbuQKQAwj1si9Vb8Z5mQphUKi0VXLAbUJlSYu7yii3H8VPMkU4ByGv2sW7J1_w1DKeAXYelJ77BSHwVAk582509ddRHjO3Q86HhyJ_pO6CfEX-G8JWUOFLNt30k79vTPOV76sch8P00Rupu2WWDfqTlPxfssH48FE_J7mUz2-6S1omY6DxHU1mqLWlhEYWuS-WsrSUAGafIzP45qLwio-q8ci6vSrTG6EZpQSAX7P7vtiWi4zm0HYbpqEALsJn8BfEuUtM</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Patra, J.C.</creator><creator>Han Yang Lee</creator><creator>Meher, P.K.</creator><creator>Ee Luang Ang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System</title><author>Patra, J.C. ; Han Yang Lee ; Meher, P.K. ; Ee Luang Ang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-577a6c8ed8e508aa05db4988d311e694e60347147ce64d7c997cba8665f450e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Intelligent networks</topic><topic>intelligent sensor</topic><topic>Intelligent sensors</topic><topic>Light sources</topic><topic>Multi-layer neural network</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Sensor arrays</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Patra, J.C.</creatorcontrib><creatorcontrib>Han Yang Lee</creatorcontrib><creatorcontrib>Meher, P.K.</creatorcontrib><creatorcontrib>Ee Luang Ang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patra, J.C.</au><au>Han Yang Lee</au><au>Meher, P.K.</au><au>Ee Luang Ang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System</atitle><btitle>2006 9th International Conference on Control, Automation, Robotics and Vision</btitle><stitle>ICARCV</stitle><date>2006-12</date><risdate>2006</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424403413</isbn><isbn>9781424403417</isbn><abstract>A multi-layer perceptron neural network with floatingpoint number system is implemented on a field programmable gate array (FPGA). IEEE-754 32-bit single precision floatingpoint number is used to represent values in the neural network accurately. The neural network forms the core of an intelligent sensor system which has the ability to mitigate the nonlinear influence on the sensor output by external disturbances. Training is performed on the neural network to approximate the response characteristics of a sensor for different level of disturbances so as to compensate for the nonlinearity. The intelligent sensor system is implemented on Celoxica RC203E development board which contains a Xilinx Virtex-II FPGA chip. A custom-built intelligent light intensity sensor is used for experimentation and the neural network is able to achieve a maximum full-scale (FS) error of plusmn1.5% under the nonlinear influence caused by the varying distance between the sensor and the light source. In terms of root mean squared error (RMSE), it is able to achieve a RMSE of 0.0052</abstract><pub>IEEE</pub><doi>10.1109/ICARCV.2006.345341</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424403413 |
ispartof | 2006 9th International Conference on Control, Automation, Robotics and Vision, 2006, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4150182 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Field programmable gate arrays FPGA Intelligent networks intelligent sensor Intelligent sensors Light sources Multi-layer neural network Multilayer perceptrons Neural networks Sensor arrays Sensor phenomena and characterization Sensor systems |
title | Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Field%20Programmable%20Gate%20Array%20Implementation%20of%20a%20Neural%20Network-based%20Intelligent%20Sensor%20System&rft.btitle=2006%209th%20International%20Conference%20on%20Control,%20Automation,%20Robotics%20and%20Vision&rft.au=Patra,%20J.C.&rft.date=2006-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424403413&rft.isbn_list=9781424403417&rft_id=info:doi/10.1109/ICARCV.2006.345341&rft_dat=%3Cieee_6IE%3E4150182%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-577a6c8ed8e508aa05db4988d311e694e60347147ce64d7c997cba8665f450e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4150182&rfr_iscdi=true |