Loading…

Myoelectric signal classification using a finite impulse response neural network

Recent work by Hudgins (1993) has proposed a neural network-based approach to classifying the myoelectric signal (MES) elicited at the onset of movement of the upper limb. A standard feedforward artificial network was trained (using the backpropagation algorithm) to discriminate amongst four classes...

Full description

Saved in:
Bibliographic Details
Main Authors: Englehart, K.B., Hudgins, B.S., Stevenson, M., Parker, P.A.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c195t-a359fa96921575b61f5e3209ea9433e49e9f68270a21be0a9de31d92a8d41a403
cites
container_end_page 1094 vol.2
container_issue
container_start_page 1093
container_title
container_volume 2
creator Englehart, K.B.
Hudgins, B.S.
Stevenson, M.
Parker, P.A.
description Recent work by Hudgins (1993) has proposed a neural network-based approach to classifying the myoelectric signal (MES) elicited at the onset of movement of the upper limb. A standard feedforward artificial network was trained (using the backpropagation algorithm) to discriminate amongst four classes of upper-limb movements from the MES, acquired from the biceps and triceps muscles. The approach has demonstrated a powerful means of classifying limb function intent from the MES during natural muscular contraction, but the static nature of the network architecture fails to fully characterize the dynamic structure inherent in the MES. It has been demonstrated previously that a finite-impulse response (FIR) network has the ability to incorporate the temporal structure of a signal, representing the relationships between events in time and providing translation invariance of the relevant feature set. The application of this network architecture to limb function discrimination from the MES is described here.
doi_str_mv 10.1109/IEMBS.1994.415339
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_415339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>415339</ieee_id><sourcerecordid>415339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-a359fa96921575b61f5e3209ea9433e49e9f68270a21be0a9de31d92a8d41a403</originalsourceid><addsrcrecordid>eNotT11Lw0AQPBBBqfkB-nR_IPE-k-yjlqqFFgX1uWyTvXKaXsJdgvTfG2iHgRkYdplh7F6KQkoBj-vV9vmzkACmMNJqDVcsg6oWM7USVtgblqX0I2ZYVSld3bKP7amnjpox-oYnfwjY8abDlLzzDY6-D3xKPhw4cueDH4n74zB1iXikNPRhNoGmOF8FGv_6-HvHrh3OeXbRBft-WX0t3_LN--t6-bTJGwl2zFFbcAglKGkruy-lszR3BEIwWpMBAlfWqhKo5J4EQktatqCwbo1EI_SCPZz_eiLaDdEfMZ5259n6H2C1ToY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Myoelectric signal classification using a finite impulse response neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Englehart, K.B. ; Hudgins, B.S. ; Stevenson, M. ; Parker, P.A.</creator><creatorcontrib>Englehart, K.B. ; Hudgins, B.S. ; Stevenson, M. ; Parker, P.A.</creatorcontrib><description>Recent work by Hudgins (1993) has proposed a neural network-based approach to classifying the myoelectric signal (MES) elicited at the onset of movement of the upper limb. A standard feedforward artificial network was trained (using the backpropagation algorithm) to discriminate amongst four classes of upper-limb movements from the MES, acquired from the biceps and triceps muscles. The approach has demonstrated a powerful means of classifying limb function intent from the MES during natural muscular contraction, but the static nature of the network architecture fails to fully characterize the dynamic structure inherent in the MES. It has been demonstrated previously that a finite-impulse response (FIR) network has the ability to incorporate the temporal structure of a signal, representing the relationships between events in time and providing translation invariance of the relevant feature set. The application of this network architecture to limb function discrimination from the MES is described here.</description><identifier>ISBN: 9780780320505</identifier><identifier>ISBN: 0780320506</identifier><identifier>DOI: 10.1109/IEMBS.1994.415339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Backpropagation ; Feedback loop ; Finite impulse response filter ; Muscles ; Neural networks ; Neural prosthesis ; Neurons ; Pattern classification ; Pattern recognition</subject><ispartof>Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1994, Vol.2, p.1093-1094 vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c195t-a359fa96921575b61f5e3209ea9433e49e9f68270a21be0a9de31d92a8d41a403</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/415339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/415339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Englehart, K.B.</creatorcontrib><creatorcontrib>Hudgins, B.S.</creatorcontrib><creatorcontrib>Stevenson, M.</creatorcontrib><creatorcontrib>Parker, P.A.</creatorcontrib><title>Myoelectric signal classification using a finite impulse response neural network</title><title>Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>Recent work by Hudgins (1993) has proposed a neural network-based approach to classifying the myoelectric signal (MES) elicited at the onset of movement of the upper limb. A standard feedforward artificial network was trained (using the backpropagation algorithm) to discriminate amongst four classes of upper-limb movements from the MES, acquired from the biceps and triceps muscles. The approach has demonstrated a powerful means of classifying limb function intent from the MES during natural muscular contraction, but the static nature of the network architecture fails to fully characterize the dynamic structure inherent in the MES. It has been demonstrated previously that a finite-impulse response (FIR) network has the ability to incorporate the temporal structure of a signal, representing the relationships between events in time and providing translation invariance of the relevant feature set. The application of this network architecture to limb function discrimination from the MES is described here.</description><subject>Artificial neural networks</subject><subject>Backpropagation</subject><subject>Feedback loop</subject><subject>Finite impulse response filter</subject><subject>Muscles</subject><subject>Neural networks</subject><subject>Neural prosthesis</subject><subject>Neurons</subject><subject>Pattern classification</subject><subject>Pattern recognition</subject><isbn>9780780320505</isbn><isbn>0780320506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT11Lw0AQPBBBqfkB-nR_IPE-k-yjlqqFFgX1uWyTvXKaXsJdgvTfG2iHgRkYdplh7F6KQkoBj-vV9vmzkACmMNJqDVcsg6oWM7USVtgblqX0I2ZYVSld3bKP7amnjpox-oYnfwjY8abDlLzzDY6-D3xKPhw4cueDH4n74zB1iXikNPRhNoGmOF8FGv_6-HvHrh3OeXbRBft-WX0t3_LN--t6-bTJGwl2zFFbcAglKGkruy-lszR3BEIwWpMBAlfWqhKo5J4EQktatqCwbo1EI_SCPZz_eiLaDdEfMZ5259n6H2C1ToY</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Englehart, K.B.</creator><creator>Hudgins, B.S.</creator><creator>Stevenson, M.</creator><creator>Parker, P.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Myoelectric signal classification using a finite impulse response neural network</title><author>Englehart, K.B. ; Hudgins, B.S. ; Stevenson, M. ; Parker, P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-a359fa96921575b61f5e3209ea9433e49e9f68270a21be0a9de31d92a8d41a403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Artificial neural networks</topic><topic>Backpropagation</topic><topic>Feedback loop</topic><topic>Finite impulse response filter</topic><topic>Muscles</topic><topic>Neural networks</topic><topic>Neural prosthesis</topic><topic>Neurons</topic><topic>Pattern classification</topic><topic>Pattern recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Englehart, K.B.</creatorcontrib><creatorcontrib>Hudgins, B.S.</creatorcontrib><creatorcontrib>Stevenson, M.</creatorcontrib><creatorcontrib>Parker, P.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Englehart, K.B.</au><au>Hudgins, B.S.</au><au>Stevenson, M.</au><au>Parker, P.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Myoelectric signal classification using a finite impulse response neural network</atitle><btitle>Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>1994</date><risdate>1994</risdate><volume>2</volume><spage>1093</spage><epage>1094 vol.2</epage><pages>1093-1094 vol.2</pages><isbn>9780780320505</isbn><isbn>0780320506</isbn><abstract>Recent work by Hudgins (1993) has proposed a neural network-based approach to classifying the myoelectric signal (MES) elicited at the onset of movement of the upper limb. A standard feedforward artificial network was trained (using the backpropagation algorithm) to discriminate amongst four classes of upper-limb movements from the MES, acquired from the biceps and triceps muscles. The approach has demonstrated a powerful means of classifying limb function intent from the MES during natural muscular contraction, but the static nature of the network architecture fails to fully characterize the dynamic structure inherent in the MES. It has been demonstrated previously that a finite-impulse response (FIR) network has the ability to incorporate the temporal structure of a signal, representing the relationships between events in time and providing translation invariance of the relevant feature set. The application of this network architecture to limb function discrimination from the MES is described here.</abstract><pub>IEEE</pub><doi>10.1109/IEMBS.1994.415339</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780320505
ispartof Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1994, Vol.2, p.1093-1094 vol.2
issn
language eng
recordid cdi_ieee_primary_415339
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Backpropagation
Feedback loop
Finite impulse response filter
Muscles
Neural networks
Neural prosthesis
Neurons
Pattern classification
Pattern recognition
title Myoelectric signal classification using a finite impulse response neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Myoelectric%20signal%20classification%20using%20a%20finite%20impulse%20response%20neural%20network&rft.btitle=Proceedings%20of%2016th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Englehart,%20K.B.&rft.date=1994&rft.volume=2&rft.spage=1093&rft.epage=1094%20vol.2&rft.pages=1093-1094%20vol.2&rft.isbn=9780780320505&rft.isbn_list=0780320506&rft_id=info:doi/10.1109/IEMBS.1994.415339&rft_dat=%3Cieee_6IE%3E415339%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c195t-a359fa96921575b61f5e3209ea9433e49e9f68270a21be0a9de31d92a8d41a403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=415339&rfr_iscdi=true