Loading…

Knowledge-Aided Bayesian Detection in Heterogeneous Environments

We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different....

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2007-05, Vol.14 (5), p.355-358
Main Authors: Besson, O., Tourneret, J.-Y., Bidon, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2006.888088