Loading…

Knowledge-Aided Bayesian Detection in Heterogeneous Environments

We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different....

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2007-05, Vol.14 (5), p.355-358
Main Authors: Besson, O., Tourneret, J.-Y., Bidon, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3
cites cdi_FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3
container_end_page 358
container_issue 5
container_start_page 355
container_title IEEE signal processing letters
container_volume 14
creator Besson, O.
Tourneret, J.-Y.
Bidon, S.
description We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter
doi_str_mv 10.1109/LSP.2006.888088
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4154721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4154721</ieee_id><sourcerecordid>2338152851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3</originalsourceid><addsrcrecordid>eNp90U1P3DAQBuAItRKU9syhl6iHQg9ZZvwV-8YWKFt1pSIBZyvrTKhR1oY4S8W_r5cgDj1w8oeesTzzFsUBwgwRzPHy6nLGANRMaw1a7xR7KKWuGFf4Lu-hhsoY0LvFh5TuAECjlnvFya8Q__bU3lI19y215ffmiZJvQnlGI7nRx1D6UC7yYYi3FChuUnkeHv0Qw5rCmD4W77umT_TpZd0vbn6cX58uquXvi5-n82XlhDRj1XLpJKHUHTJnDF8pUXeoSayQMc2EcCTaFeu0QgbMaSdbJrlyvFNOgmn5fvFtevdP09v7wa-b4cnGxtvFfGm3d5AbBRT4iNkeTvZ-iA8bSqNd--So75vn_1uTLcM8pCy_vim5EDy_WWd49CZEVSMXTMGWfvmP3sXNEPJwrFZCGyGBZXQ8ITfElAbqXntCsNs8bc7TbvO0U5654vNU4YnoVQuUombI_wFnSZhR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864894502</pqid></control><display><type>article</type><title>Knowledge-Aided Bayesian Detection in Heterogeneous Environments</title><source>IEEE Xplore (Online service)</source><creator>Besson, O. ; Tourneret, J.-Y. ; Bidon, S.</creator><creatorcontrib>Besson, O. ; Tourneret, J.-Y. ; Bidon, S.</creatorcontrib><description>We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2006.888088</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace electronics ; Bayesian analysis ; Bayesian detection ; Bayesian methods ; Clutter ; Covariance ; Covariance matrix ; Detectors ; Engineering Sciences ; Estimates ; heterogenous environments ; knowledge-aided processing ; Matched filters ; Mathematical analysis ; Matrices ; maximum a posteriori estimation ; Radar detection ; Signal and Image processing ; Signal detection ; Testing ; Training ; Working environment noise</subject><ispartof>IEEE signal processing letters, 2007-05, Vol.14 (5), p.355-358</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3</citedby><cites>FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3</cites><orcidid>0000-0001-5219-3455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4154721$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03610141$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Besson, O.</creatorcontrib><creatorcontrib>Tourneret, J.-Y.</creatorcontrib><creatorcontrib>Bidon, S.</creatorcontrib><title>Knowledge-Aided Bayesian Detection in Heterogeneous Environments</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter</description><subject>Aerospace electronics</subject><subject>Bayesian analysis</subject><subject>Bayesian detection</subject><subject>Bayesian methods</subject><subject>Clutter</subject><subject>Covariance</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Engineering Sciences</subject><subject>Estimates</subject><subject>heterogenous environments</subject><subject>knowledge-aided processing</subject><subject>Matched filters</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>maximum a posteriori estimation</subject><subject>Radar detection</subject><subject>Signal and Image processing</subject><subject>Signal detection</subject><subject>Testing</subject><subject>Training</subject><subject>Working environment noise</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90U1P3DAQBuAItRKU9syhl6iHQg9ZZvwV-8YWKFt1pSIBZyvrTKhR1oY4S8W_r5cgDj1w8oeesTzzFsUBwgwRzPHy6nLGANRMaw1a7xR7KKWuGFf4Lu-hhsoY0LvFh5TuAECjlnvFya8Q__bU3lI19y215ffmiZJvQnlGI7nRx1D6UC7yYYi3FChuUnkeHv0Qw5rCmD4W77umT_TpZd0vbn6cX58uquXvi5-n82XlhDRj1XLpJKHUHTJnDF8pUXeoSayQMc2EcCTaFeu0QgbMaSdbJrlyvFNOgmn5fvFtevdP09v7wa-b4cnGxtvFfGm3d5AbBRT4iNkeTvZ-iA8bSqNd--So75vn_1uTLcM8pCy_vim5EDy_WWd49CZEVSMXTMGWfvmP3sXNEPJwrFZCGyGBZXQ8ITfElAbqXntCsNs8bc7TbvO0U5654vNU4YnoVQuUombI_wFnSZhR</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Besson, O.</creator><creator>Tourneret, J.-Y.</creator><creator>Bidon, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid></search><sort><creationdate>20070501</creationdate><title>Knowledge-Aided Bayesian Detection in Heterogeneous Environments</title><author>Besson, O. ; Tourneret, J.-Y. ; Bidon, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerospace electronics</topic><topic>Bayesian analysis</topic><topic>Bayesian detection</topic><topic>Bayesian methods</topic><topic>Clutter</topic><topic>Covariance</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Engineering Sciences</topic><topic>Estimates</topic><topic>heterogenous environments</topic><topic>knowledge-aided processing</topic><topic>Matched filters</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>maximum a posteriori estimation</topic><topic>Radar detection</topic><topic>Signal and Image processing</topic><topic>Signal detection</topic><topic>Testing</topic><topic>Training</topic><topic>Working environment noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besson, O.</creatorcontrib><creatorcontrib>Tourneret, J.-Y.</creatorcontrib><creatorcontrib>Bidon, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besson, O.</au><au>Tourneret, J.-Y.</au><au>Bidon, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-Aided Bayesian Detection in Heterogeneous Environments</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>14</volume><issue>5</issue><spage>355</spage><epage>358</epage><pages>355-358</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2006.888088</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2007-05, Vol.14 (5), p.355-358
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_4154721
source IEEE Xplore (Online service)
subjects Aerospace electronics
Bayesian analysis
Bayesian detection
Bayesian methods
Clutter
Covariance
Covariance matrix
Detectors
Engineering Sciences
Estimates
heterogenous environments
knowledge-aided processing
Matched filters
Mathematical analysis
Matrices
maximum a posteriori estimation
Radar detection
Signal and Image processing
Signal detection
Testing
Training
Working environment noise
title Knowledge-Aided Bayesian Detection in Heterogeneous Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-Aided%20Bayesian%20Detection%20in%20Heterogeneous%20Environments&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Besson,%20O.&rft.date=2007-05-01&rft.volume=14&rft.issue=5&rft.spage=355&rft.epage=358&rft.pages=355-358&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2006.888088&rft_dat=%3Cproquest_ieee_%3E2338152851%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864894502&rft_id=info:pmid/&rft_ieee_id=4154721&rfr_iscdi=true