Loading…
Knowledge-Aided Bayesian Detection in Heterogeneous Environments
We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different....
Saved in:
Published in: | IEEE signal processing letters 2007-05, Vol.14 (5), p.355-358 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3 |
container_end_page | 358 |
container_issue | 5 |
container_start_page | 355 |
container_title | IEEE signal processing letters |
container_volume | 14 |
creator | Besson, O. Tourneret, J.-Y. Bidon, S. |
description | We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter |
doi_str_mv | 10.1109/LSP.2006.888088 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4154721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4154721</ieee_id><sourcerecordid>2338152851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3</originalsourceid><addsrcrecordid>eNp90U1P3DAQBuAItRKU9syhl6iHQg9ZZvwV-8YWKFt1pSIBZyvrTKhR1oY4S8W_r5cgDj1w8oeesTzzFsUBwgwRzPHy6nLGANRMaw1a7xR7KKWuGFf4Lu-hhsoY0LvFh5TuAECjlnvFya8Q__bU3lI19y215ffmiZJvQnlGI7nRx1D6UC7yYYi3FChuUnkeHv0Qw5rCmD4W77umT_TpZd0vbn6cX58uquXvi5-n82XlhDRj1XLpJKHUHTJnDF8pUXeoSayQMc2EcCTaFeu0QgbMaSdbJrlyvFNOgmn5fvFtevdP09v7wa-b4cnGxtvFfGm3d5AbBRT4iNkeTvZ-iA8bSqNd--So75vn_1uTLcM8pCy_vim5EDy_WWd49CZEVSMXTMGWfvmP3sXNEPJwrFZCGyGBZXQ8ITfElAbqXntCsNs8bc7TbvO0U5654vNU4YnoVQuUombI_wFnSZhR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864894502</pqid></control><display><type>article</type><title>Knowledge-Aided Bayesian Detection in Heterogeneous Environments</title><source>IEEE Xplore (Online service)</source><creator>Besson, O. ; Tourneret, J.-Y. ; Bidon, S.</creator><creatorcontrib>Besson, O. ; Tourneret, J.-Y. ; Bidon, S.</creatorcontrib><description>We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2006.888088</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace electronics ; Bayesian analysis ; Bayesian detection ; Bayesian methods ; Clutter ; Covariance ; Covariance matrix ; Detectors ; Engineering Sciences ; Estimates ; heterogenous environments ; knowledge-aided processing ; Matched filters ; Mathematical analysis ; Matrices ; maximum a posteriori estimation ; Radar detection ; Signal and Image processing ; Signal detection ; Testing ; Training ; Working environment noise</subject><ispartof>IEEE signal processing letters, 2007-05, Vol.14 (5), p.355-358</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3</citedby><cites>FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3</cites><orcidid>0000-0001-5219-3455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4154721$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03610141$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Besson, O.</creatorcontrib><creatorcontrib>Tourneret, J.-Y.</creatorcontrib><creatorcontrib>Bidon, S.</creatorcontrib><title>Knowledge-Aided Bayesian Detection in Heterogeneous Environments</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter</description><subject>Aerospace electronics</subject><subject>Bayesian analysis</subject><subject>Bayesian detection</subject><subject>Bayesian methods</subject><subject>Clutter</subject><subject>Covariance</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Engineering Sciences</subject><subject>Estimates</subject><subject>heterogenous environments</subject><subject>knowledge-aided processing</subject><subject>Matched filters</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>maximum a posteriori estimation</subject><subject>Radar detection</subject><subject>Signal and Image processing</subject><subject>Signal detection</subject><subject>Testing</subject><subject>Training</subject><subject>Working environment noise</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90U1P3DAQBuAItRKU9syhl6iHQg9ZZvwV-8YWKFt1pSIBZyvrTKhR1oY4S8W_r5cgDj1w8oeesTzzFsUBwgwRzPHy6nLGANRMaw1a7xR7KKWuGFf4Lu-hhsoY0LvFh5TuAECjlnvFya8Q__bU3lI19y215ffmiZJvQnlGI7nRx1D6UC7yYYi3FChuUnkeHv0Qw5rCmD4W77umT_TpZd0vbn6cX58uquXvi5-n82XlhDRj1XLpJKHUHTJnDF8pUXeoSayQMc2EcCTaFeu0QgbMaSdbJrlyvFNOgmn5fvFtevdP09v7wa-b4cnGxtvFfGm3d5AbBRT4iNkeTvZ-iA8bSqNd--So75vn_1uTLcM8pCy_vim5EDy_WWd49CZEVSMXTMGWfvmP3sXNEPJwrFZCGyGBZXQ8ITfElAbqXntCsNs8bc7TbvO0U5654vNU4YnoVQuUombI_wFnSZhR</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Besson, O.</creator><creator>Tourneret, J.-Y.</creator><creator>Bidon, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid></search><sort><creationdate>20070501</creationdate><title>Knowledge-Aided Bayesian Detection in Heterogeneous Environments</title><author>Besson, O. ; Tourneret, J.-Y. ; Bidon, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerospace electronics</topic><topic>Bayesian analysis</topic><topic>Bayesian detection</topic><topic>Bayesian methods</topic><topic>Clutter</topic><topic>Covariance</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Engineering Sciences</topic><topic>Estimates</topic><topic>heterogenous environments</topic><topic>knowledge-aided processing</topic><topic>Matched filters</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>maximum a posteriori estimation</topic><topic>Radar detection</topic><topic>Signal and Image processing</topic><topic>Signal detection</topic><topic>Testing</topic><topic>Training</topic><topic>Working environment noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besson, O.</creatorcontrib><creatorcontrib>Tourneret, J.-Y.</creatorcontrib><creatorcontrib>Bidon, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besson, O.</au><au>Tourneret, J.-Y.</au><au>Bidon, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-Aided Bayesian Detection in Heterogeneous Environments</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>14</volume><issue>5</issue><spage>355</spage><epage>358</epage><pages>355-358</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2006.888088</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2007-05, Vol.14 (5), p.355-358 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_4154721 |
source | IEEE Xplore (Online service) |
subjects | Aerospace electronics Bayesian analysis Bayesian detection Bayesian methods Clutter Covariance Covariance matrix Detectors Engineering Sciences Estimates heterogenous environments knowledge-aided processing Matched filters Mathematical analysis Matrices maximum a posteriori estimation Radar detection Signal and Image processing Signal detection Testing Training Working environment noise |
title | Knowledge-Aided Bayesian Detection in Heterogeneous Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-Aided%20Bayesian%20Detection%20in%20Heterogeneous%20Environments&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Besson,%20O.&rft.date=2007-05-01&rft.volume=14&rft.issue=5&rft.spage=355&rft.epage=358&rft.pages=355-358&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2006.888088&rft_dat=%3Cproquest_ieee_%3E2338152851%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-d35c5e158f12c993b647f18e4b1228244ce4db2f861202c8c5d2536c3f6c509d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864894502&rft_id=info:pmid/&rft_ieee_id=4154721&rfr_iscdi=true |