Loading…
Secondary Emission From Glass Grains: Comparison of the Model and Experiment
The surface potential of dust grains immersed in surrounding plasma results from the balance of many charging processes such as photoemission, electron/ion attachments, and secondary and field emissions. Since hot electrons are often present in space as well as laboratory plasmas, the understanding...
Saved in:
Published in: | IEEE transactions on plasma science 2007-04, Vol.35 (2), p.286-291 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The surface potential of dust grains immersed in surrounding plasma results from the balance of many charging processes such as photoemission, electron/ion attachments, and secondary and field emissions. Since hot electrons are often present in space as well as laboratory plasmas, the understanding of the secondary electron (SE) emission process for small dust grains is of great interest because their size effects modify well-known characteristics of large samples. This paper compares the measured surface potential of SiO 2 spherical dust grains with the results of the Monte Carlo model of secondary emission developed for metallic samples. It was found that 1) the model can be used for description of the secondary emission process from cosmic dust, 2) the backscattering of primary beam electrons is the most important factor for the charging of small grains, and 3) the actual value of the surface grain potential is given by the energy spectrum of SEs |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2007.892131 |