Loading…
Nano Self-Assembled Nanoparticle Ion-Sensitive Field-Effect Transistors for Acetylcholine Biosensing
We present an inexpensive way to fabricate high-performance nanoparticle based ion-sensitive field-effect transistors (ISFETs) for the acetylcholine biosensing application. The fabrication is implemented with a low-cost layer-by-layer nano self-assembly and microfabrication techniques. Self-assemble...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an inexpensive way to fabricate high-performance nanoparticle based ion-sensitive field-effect transistors (ISFETs) for the acetylcholine biosensing application. The fabrication is implemented with a low-cost layer-by-layer nano self-assembly and microfabrication techniques. Self-assembled silica nanoparticle thin film and indium oxide nanoparticle thin film work as the gate dielectric and semiconducting channel respectively. The ISFETs operate at a low-voltage range of less than 2 V, and has a high mobility of 43.10 cm 2 /Vs. Acetylcholine in a concentration as low as 100 nM could be detected with this sensor. The results presented herein suggest a route to inexpensive, high mobility ion-sensitive field-effect transistors for biosensing applications. |
---|---|
DOI: | 10.1109/NEMS.2007.352040 |