Loading…

Space Technology 7 -- Micropropulsion and Mass Distribution

The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 distrubance reduction system (DRS) will contain new micropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space ant...

Full description

Saved in:
Bibliographic Details
Main Authors: Carmain, A., Dunn, C., Ziemer, J., Hruby, V., Spence, D., Demmons, N., Roy, T., McCormick, R., Ehrbar, E., Zwahlen, J., Connolly, W., O'Donnell, J., Markley, F., Maghami, P., Hsu, O.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10
container_issue
container_start_page 1
container_title
container_volume
creator Carmain, A.
Dunn, C.
Ziemer, J.
Hruby, V.
Spence, D.
Demmons, N.
Roy, T.
McCormick, R.
Ehrbar, E.
Zwahlen, J.
Connolly, W.
O'Donnell, J.
Markley, F.
Maghami, P.
Hsu, O.
description The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 distrubance reduction system (DRS) will contain new micropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass. The acceleration is characterized by calculating the gravitational effect of over ten million modeled points of a nearly 500-kg spacecraft. This paper provides an overview of the mission technology and the process of precision mass modeling of the DRS equipment.
doi_str_mv 10.1109/AERO.2007.352782
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4161317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4161317</ieee_id><sourcerecordid>4161317</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-de59a725aefd641de698a0ab303ce87d987b7278b639553033e521baba394bc83</originalsourceid><addsrcrecordid>eNpFj01LxDAYhOMX2F29C17yB1LfvEmaBE_Lun7ALgvag7clabMaqW1puof99xYUhIGBZ5iBIeSGQ8452LvF6nWbI4DOhUJt8ITMuEQpQaGSpyRDawuGQpmz_0AW5ySbyooJFO-XZJbSFwACGsjI_VvvqkDLUH22XdN9HKmmjNFNrIaun3RoUuxa6tqablxK9CGmcYj-ME70ilzsXZPC9Z_PSfm4KpfPbL19elku1ixaGFkdlHUalQv7upC8DoU1DpwXIKpgdG2N9nr64gthlZqoCAq5d94JK31lxJzc_s7GEMKuH-K3G447yQsuuBY_-iRJ8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Space Technology 7 -- Micropropulsion and Mass Distribution</title><source>IEEE Xplore All Conference Series</source><creator>Carmain, A. ; Dunn, C. ; Ziemer, J. ; Hruby, V. ; Spence, D. ; Demmons, N. ; Roy, T. ; McCormick, R. ; Ehrbar, E. ; Zwahlen, J. ; Connolly, W. ; O'Donnell, J. ; Markley, F. ; Maghami, P. ; Hsu, O.</creator><creatorcontrib>Carmain, A. ; Dunn, C. ; Ziemer, J. ; Hruby, V. ; Spence, D. ; Demmons, N. ; Roy, T. ; McCormick, R. ; Ehrbar, E. ; Zwahlen, J. ; Connolly, W. ; O'Donnell, J. ; Markley, F. ; Maghami, P. ; Hsu, O.</creatorcontrib><description>The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 distrubance reduction system (DRS) will contain new micropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass. The acceleration is characterized by calculating the gravitational effect of over ten million modeled points of a nearly 500-kg spacecraft. This paper provides an overview of the mission technology and the process of precision mass modeling of the DRS equipment.</description><identifier>ISSN: 1095-323X</identifier><identifier>ISBN: 1424405246</identifier><identifier>ISBN: 9781424405244</identifier><identifier>EISSN: 2996-2358</identifier><identifier>EISBN: 1424405254</identifier><identifier>EISBN: 9781424405251</identifier><identifier>DOI: 10.1109/AERO.2007.352782</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Control systems ; Lagrangian functions ; Life estimation ; Low earth orbit satellites ; NASA ; Space technology ; Space vehicles ; System testing ; Weight control</subject><ispartof>2007 IEEE Aerospace Conference, 2007, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4161317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4161317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carmain, A.</creatorcontrib><creatorcontrib>Dunn, C.</creatorcontrib><creatorcontrib>Ziemer, J.</creatorcontrib><creatorcontrib>Hruby, V.</creatorcontrib><creatorcontrib>Spence, D.</creatorcontrib><creatorcontrib>Demmons, N.</creatorcontrib><creatorcontrib>Roy, T.</creatorcontrib><creatorcontrib>McCormick, R.</creatorcontrib><creatorcontrib>Ehrbar, E.</creatorcontrib><creatorcontrib>Zwahlen, J.</creatorcontrib><creatorcontrib>Connolly, W.</creatorcontrib><creatorcontrib>O'Donnell, J.</creatorcontrib><creatorcontrib>Markley, F.</creatorcontrib><creatorcontrib>Maghami, P.</creatorcontrib><creatorcontrib>Hsu, O.</creatorcontrib><title>Space Technology 7 -- Micropropulsion and Mass Distribution</title><title>2007 IEEE Aerospace Conference</title><addtitle>AERO</addtitle><description>The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 distrubance reduction system (DRS) will contain new micropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass. The acceleration is characterized by calculating the gravitational effect of over ten million modeled points of a nearly 500-kg spacecraft. This paper provides an overview of the mission technology and the process of precision mass modeling of the DRS equipment.</description><subject>Acceleration</subject><subject>Control systems</subject><subject>Lagrangian functions</subject><subject>Life estimation</subject><subject>Low earth orbit satellites</subject><subject>NASA</subject><subject>Space technology</subject><subject>Space vehicles</subject><subject>System testing</subject><subject>Weight control</subject><issn>1095-323X</issn><issn>2996-2358</issn><isbn>1424405246</isbn><isbn>9781424405244</isbn><isbn>1424405254</isbn><isbn>9781424405251</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj01LxDAYhOMX2F29C17yB1LfvEmaBE_Lun7ALgvag7clabMaqW1puof99xYUhIGBZ5iBIeSGQ8452LvF6nWbI4DOhUJt8ITMuEQpQaGSpyRDawuGQpmz_0AW5ySbyooJFO-XZJbSFwACGsjI_VvvqkDLUH22XdN9HKmmjNFNrIaun3RoUuxa6tqablxK9CGmcYj-ME70ilzsXZPC9Z_PSfm4KpfPbL19elku1ixaGFkdlHUalQv7upC8DoU1DpwXIKpgdG2N9nr64gthlZqoCAq5d94JK31lxJzc_s7GEMKuH-K3G447yQsuuBY_-iRJ8Q</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Carmain, A.</creator><creator>Dunn, C.</creator><creator>Ziemer, J.</creator><creator>Hruby, V.</creator><creator>Spence, D.</creator><creator>Demmons, N.</creator><creator>Roy, T.</creator><creator>McCormick, R.</creator><creator>Ehrbar, E.</creator><creator>Zwahlen, J.</creator><creator>Connolly, W.</creator><creator>O'Donnell, J.</creator><creator>Markley, F.</creator><creator>Maghami, P.</creator><creator>Hsu, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200703</creationdate><title>Space Technology 7 -- Micropropulsion and Mass Distribution</title><author>Carmain, A. ; Dunn, C. ; Ziemer, J. ; Hruby, V. ; Spence, D. ; Demmons, N. ; Roy, T. ; McCormick, R. ; Ehrbar, E. ; Zwahlen, J. ; Connolly, W. ; O'Donnell, J. ; Markley, F. ; Maghami, P. ; Hsu, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-de59a725aefd641de698a0ab303ce87d987b7278b639553033e521baba394bc83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acceleration</topic><topic>Control systems</topic><topic>Lagrangian functions</topic><topic>Life estimation</topic><topic>Low earth orbit satellites</topic><topic>NASA</topic><topic>Space technology</topic><topic>Space vehicles</topic><topic>System testing</topic><topic>Weight control</topic><toplevel>online_resources</toplevel><creatorcontrib>Carmain, A.</creatorcontrib><creatorcontrib>Dunn, C.</creatorcontrib><creatorcontrib>Ziemer, J.</creatorcontrib><creatorcontrib>Hruby, V.</creatorcontrib><creatorcontrib>Spence, D.</creatorcontrib><creatorcontrib>Demmons, N.</creatorcontrib><creatorcontrib>Roy, T.</creatorcontrib><creatorcontrib>McCormick, R.</creatorcontrib><creatorcontrib>Ehrbar, E.</creatorcontrib><creatorcontrib>Zwahlen, J.</creatorcontrib><creatorcontrib>Connolly, W.</creatorcontrib><creatorcontrib>O'Donnell, J.</creatorcontrib><creatorcontrib>Markley, F.</creatorcontrib><creatorcontrib>Maghami, P.</creatorcontrib><creatorcontrib>Hsu, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carmain, A.</au><au>Dunn, C.</au><au>Ziemer, J.</au><au>Hruby, V.</au><au>Spence, D.</au><au>Demmons, N.</au><au>Roy, T.</au><au>McCormick, R.</au><au>Ehrbar, E.</au><au>Zwahlen, J.</au><au>Connolly, W.</au><au>O'Donnell, J.</au><au>Markley, F.</au><au>Maghami, P.</au><au>Hsu, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Space Technology 7 -- Micropropulsion and Mass Distribution</atitle><btitle>2007 IEEE Aerospace Conference</btitle><stitle>AERO</stitle><date>2007-03</date><risdate>2007</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1095-323X</issn><eissn>2996-2358</eissn><isbn>1424405246</isbn><isbn>9781424405244</isbn><eisbn>1424405254</eisbn><eisbn>9781424405251</eisbn><abstract>The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 distrubance reduction system (DRS) will contain new micropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass. The acceleration is characterized by calculating the gravitational effect of over ten million modeled points of a nearly 500-kg spacecraft. This paper provides an overview of the mission technology and the process of precision mass modeling of the DRS equipment.</abstract><pub>IEEE</pub><doi>10.1109/AERO.2007.352782</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1095-323X
ispartof 2007 IEEE Aerospace Conference, 2007, p.1-10
issn 1095-323X
2996-2358
language eng
recordid cdi_ieee_primary_4161317
source IEEE Xplore All Conference Series
subjects Acceleration
Control systems
Lagrangian functions
Life estimation
Low earth orbit satellites
NASA
Space technology
Space vehicles
System testing
Weight control
title Space Technology 7 -- Micropropulsion and Mass Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Space%20Technology%207%20--%20Micropropulsion%20and%20Mass%20Distribution&rft.btitle=2007%20IEEE%20Aerospace%20Conference&rft.au=Carmain,%20A.&rft.date=2007-03&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1095-323X&rft.eissn=2996-2358&rft.isbn=1424405246&rft.isbn_list=9781424405244&rft_id=info:doi/10.1109/AERO.2007.352782&rft.eisbn=1424405254&rft.eisbn_list=9781424405251&rft_dat=%3Cieee_CHZPO%3E4161317%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-de59a725aefd641de698a0ab303ce87d987b7278b639553033e521baba394bc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4161317&rfr_iscdi=true