Loading…

Graph Coloring and Conditional Graph Entropy

We consider the remote computation of a function of two sources where one is receiver side information. Specifically, given side information Y, we wish to compute f(X, Y) based on information transmitted by X over a noise-less channel. The goal is to characterize the minimal rate at which X must tra...

Full description

Saved in:
Bibliographic Details
Main Authors: Doshi, V., Shah, D., Medard, M., Jaggi, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2141
container_issue
container_start_page 2137
container_title
container_volume
creator Doshi, V.
Shah, D.
Medard, M.
Jaggi, S.
description We consider the remote computation of a function of two sources where one is receiver side information. Specifically, given side information Y, we wish to compute f(X, Y) based on information transmitted by X over a noise-less channel. The goal is to characterize the minimal rate at which X must transmit information to enable the computation of the function f. Recently, Orlitsky and Roche (2001) established that the conditional graph entropy of the characteristic graph of the function is a solution to this problem. Their achievability scheme does not separate "functional coding" from the well understood distributed source coding problem. In this paper, we seek a separation between the functional coding and the coding for correlation. In other words, we want to preprocess X (with respect to f), and then transmit the preprocessed data using a standard Slepian-Wolf coding scheme at the Orlitsky-Roche rate. We establish that a minimum (conditional) entropy coloring of the product of characteristic graphs is asymptotically equal to the conditional graph entropy. This can be seen as a generalization of a result of Korner (1973) which shows that the minimum entropy coloring of product graphs is asymptotically equal to the graph entropy. Thus, graph coloring provides a modular technique to achieve coding gains when the receiver is interested in decoding some function of the source.
doi_str_mv 10.1109/ACSSC.2006.355146
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4176956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4176956</ieee_id><sourcerecordid>4176956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-1a07809983448d9a1b5244322d7af0e1cb0612723b3f84fb47a803744bc3102b3</originalsourceid><addsrcrecordid>eNpVjstKw0AYhccbGGoeQNzkAUz8L3NdllCrUHBRXZeZJtGRmIQkm769gbpxdfg4cM4nxD1CgQjuaV3u92VBALpgpVDqC5E6Y1GSlGCscpciIWV0Tgx89a-TdC0SBGVzzY5vRTpN3wCAZkFHiXjcjn74ysq-7cfYfWa-qxboqjjHvvNtdq433Tz2w-lO3DS-ner0L1fi43nzXr7ku7fta7ne5ZHQzjn65RicsyylrZzHoBYZJqqMb6DGYwCNZIgDN1Y2QRpvgY2U4cgIFHglHs67sa7rwzDGHz-eDnKRdkrzL1XFRcw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Graph Coloring and Conditional Graph Entropy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Doshi, V. ; Shah, D. ; Medard, M. ; Jaggi, S.</creator><creatorcontrib>Doshi, V. ; Shah, D. ; Medard, M. ; Jaggi, S.</creatorcontrib><description>We consider the remote computation of a function of two sources where one is receiver side information. Specifically, given side information Y, we wish to compute f(X, Y) based on information transmitted by X over a noise-less channel. The goal is to characterize the minimal rate at which X must transmit information to enable the computation of the function f. Recently, Orlitsky and Roche (2001) established that the conditional graph entropy of the characteristic graph of the function is a solution to this problem. Their achievability scheme does not separate "functional coding" from the well understood distributed source coding problem. In this paper, we seek a separation between the functional coding and the coding for correlation. In other words, we want to preprocess X (with respect to f), and then transmit the preprocessed data using a standard Slepian-Wolf coding scheme at the Orlitsky-Roche rate. We establish that a minimum (conditional) entropy coloring of the product of characteristic graphs is asymptotically equal to the conditional graph entropy. This can be seen as a generalization of a result of Korner (1973) which shows that the minimum entropy coloring of product graphs is asymptotically equal to the graph entropy. Thus, graph coloring provides a modular technique to achieve coding gains when the receiver is interested in decoding some function of the source.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781424407842</identifier><identifier>ISBN: 1424407842</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424407859</identifier><identifier>EISBN: 1424407850</identifier><identifier>DOI: 10.1109/ACSSC.2006.355146</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data compression ; Decoding ; Entropy ; Information rates ; Laboratories ; Random variables ; Rate distortion theory ; Rate-distortion ; Relays ; Source coding</subject><ispartof>2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, p.2137-2141</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4176956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4176956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doshi, V.</creatorcontrib><creatorcontrib>Shah, D.</creatorcontrib><creatorcontrib>Medard, M.</creatorcontrib><creatorcontrib>Jaggi, S.</creatorcontrib><title>Graph Coloring and Conditional Graph Entropy</title><title>2006 Fortieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>We consider the remote computation of a function of two sources where one is receiver side information. Specifically, given side information Y, we wish to compute f(X, Y) based on information transmitted by X over a noise-less channel. The goal is to characterize the minimal rate at which X must transmit information to enable the computation of the function f. Recently, Orlitsky and Roche (2001) established that the conditional graph entropy of the characteristic graph of the function is a solution to this problem. Their achievability scheme does not separate "functional coding" from the well understood distributed source coding problem. In this paper, we seek a separation between the functional coding and the coding for correlation. In other words, we want to preprocess X (with respect to f), and then transmit the preprocessed data using a standard Slepian-Wolf coding scheme at the Orlitsky-Roche rate. We establish that a minimum (conditional) entropy coloring of the product of characteristic graphs is asymptotically equal to the conditional graph entropy. This can be seen as a generalization of a result of Korner (1973) which shows that the minimum entropy coloring of product graphs is asymptotically equal to the graph entropy. Thus, graph coloring provides a modular technique to achieve coding gains when the receiver is interested in decoding some function of the source.</description><subject>Data compression</subject><subject>Decoding</subject><subject>Entropy</subject><subject>Information rates</subject><subject>Laboratories</subject><subject>Random variables</subject><subject>Rate distortion theory</subject><subject>Rate-distortion</subject><subject>Relays</subject><subject>Source coding</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781424407842</isbn><isbn>1424407842</isbn><isbn>9781424407859</isbn><isbn>1424407850</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVjstKw0AYhccbGGoeQNzkAUz8L3NdllCrUHBRXZeZJtGRmIQkm769gbpxdfg4cM4nxD1CgQjuaV3u92VBALpgpVDqC5E6Y1GSlGCscpciIWV0Tgx89a-TdC0SBGVzzY5vRTpN3wCAZkFHiXjcjn74ysq-7cfYfWa-qxboqjjHvvNtdq433Tz2w-lO3DS-ner0L1fi43nzXr7ku7fta7ne5ZHQzjn65RicsyylrZzHoBYZJqqMb6DGYwCNZIgDN1Y2QRpvgY2U4cgIFHglHs67sa7rwzDGHz-eDnKRdkrzL1XFRcw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Doshi, V.</creator><creator>Shah, D.</creator><creator>Medard, M.</creator><creator>Jaggi, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20060101</creationdate><title>Graph Coloring and Conditional Graph Entropy</title><author>Doshi, V. ; Shah, D. ; Medard, M. ; Jaggi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-1a07809983448d9a1b5244322d7af0e1cb0612723b3f84fb47a803744bc3102b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Data compression</topic><topic>Decoding</topic><topic>Entropy</topic><topic>Information rates</topic><topic>Laboratories</topic><topic>Random variables</topic><topic>Rate distortion theory</topic><topic>Rate-distortion</topic><topic>Relays</topic><topic>Source coding</topic><toplevel>online_resources</toplevel><creatorcontrib>Doshi, V.</creatorcontrib><creatorcontrib>Shah, D.</creatorcontrib><creatorcontrib>Medard, M.</creatorcontrib><creatorcontrib>Jaggi, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doshi, V.</au><au>Shah, D.</au><au>Medard, M.</au><au>Jaggi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Graph Coloring and Conditional Graph Entropy</atitle><btitle>2006 Fortieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2006-01-01</date><risdate>2006</risdate><spage>2137</spage><epage>2141</epage><pages>2137-2141</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781424407842</isbn><isbn>1424407842</isbn><eisbn>9781424407859</eisbn><eisbn>1424407850</eisbn><abstract>We consider the remote computation of a function of two sources where one is receiver side information. Specifically, given side information Y, we wish to compute f(X, Y) based on information transmitted by X over a noise-less channel. The goal is to characterize the minimal rate at which X must transmit information to enable the computation of the function f. Recently, Orlitsky and Roche (2001) established that the conditional graph entropy of the characteristic graph of the function is a solution to this problem. Their achievability scheme does not separate "functional coding" from the well understood distributed source coding problem. In this paper, we seek a separation between the functional coding and the coding for correlation. In other words, we want to preprocess X (with respect to f), and then transmit the preprocessed data using a standard Slepian-Wolf coding scheme at the Orlitsky-Roche rate. We establish that a minimum (conditional) entropy coloring of the product of characteristic graphs is asymptotically equal to the conditional graph entropy. This can be seen as a generalization of a result of Korner (1973) which shows that the minimum entropy coloring of product graphs is asymptotically equal to the graph entropy. Thus, graph coloring provides a modular technique to achieve coding gains when the receiver is interested in decoding some function of the source.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2006.355146</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, p.2137-2141
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_4176956
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data compression
Decoding
Entropy
Information rates
Laboratories
Random variables
Rate distortion theory
Rate-distortion
Relays
Source coding
title Graph Coloring and Conditional Graph Entropy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Graph%20Coloring%20and%20Conditional%20Graph%20Entropy&rft.btitle=2006%20Fortieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Doshi,%20V.&rft.date=2006-01-01&rft.spage=2137&rft.epage=2141&rft.pages=2137-2141&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781424407842&rft.isbn_list=1424407842&rft_id=info:doi/10.1109/ACSSC.2006.355146&rft.eisbn=9781424407859&rft.eisbn_list=1424407850&rft_dat=%3Cieee_6IE%3E4176956%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-1a07809983448d9a1b5244322d7af0e1cb0612723b3f84fb47a803744bc3102b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4176956&rfr_iscdi=true