Loading…

Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction

4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired...

Full description

Saved in:
Bibliographic Details
Main Authors: Reader, A.J., Matthews, J.C., Sureau, F.C., Comtat, C., Trebossen, R., Buvat, I.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23
cites
container_end_page 1756
container_issue
container_start_page 1752
container_title
container_volume 3
creator Reader, A.J.
Matthews, J.C.
Sureau, F.C.
Comtat, C.
Trebossen, R.
Buvat, I.
description 4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired parameters. Such a separated approach does not account for the task of kinetic parameter estimation within the reconstruction itself. This work indicates that conventional frame-by-frame maximum likelihood reconstruction in high noise situations is sub-optimal if post-reconstruction kinetic parameter estimation is to be performed. As an alternative, a simple to implement, EM-based iterative reconstruction method is proposed which uses all of the acquired data in every iteration and includes the image-space kinetic parameter estimation process within the reconstruction. The method can accommodate kinetic models of any chosen complexity with relative ease, and can deliver more accurate kinetic parameter estimates than the conventional approach for low-statistics data.
doi_str_mv 10.1109/NSSMIC.2006.354235
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4179348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4179348</ieee_id><sourcerecordid>4179348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23</originalsourceid><addsrcrecordid>eNo1TttOwkAUXG-JgPyAvuwPFM-ePe12Hw2CNqIQwWfSbk91DRTTLhr-3hr1ZSZzyWSEuFQwUgrs9dNy-ZiNRwiQjHRMqOMj0VeERBAnCo5FD2NjIkjRnoihNel_BngqeqrzI53EdC76bfsOgKCJemKeBW7y4D9ZPviag3dykTf5ljtbTtrgt124q-WXD2--ltP9ZnOQdCsXk5XMtvkry2d2u7oNzd79FC_EWZVvWh7-8UC8TCer8X00m99l45tZ5BApRFSVhbMF68QRA5jUATI6JNuBKipjVEFOVwy6TErEspNp5ZxBWyEx6oG4-t31zLz-aLqfzWFNylhNqf4GCqVTUw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction</title><source>IEEE Xplore All Conference Series</source><creator>Reader, A.J. ; Matthews, J.C. ; Sureau, F.C. ; Comtat, C. ; Trebossen, R. ; Buvat, I.</creator><creatorcontrib>Reader, A.J. ; Matthews, J.C. ; Sureau, F.C. ; Comtat, C. ; Trebossen, R. ; Buvat, I.</creatorcontrib><description>4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired parameters. Such a separated approach does not account for the task of kinetic parameter estimation within the reconstruction itself. This work indicates that conventional frame-by-frame maximum likelihood reconstruction in high noise situations is sub-optimal if post-reconstruction kinetic parameter estimation is to be performed. As an alternative, a simple to implement, EM-based iterative reconstruction method is proposed which uses all of the acquired data in every iteration and includes the image-space kinetic parameter estimation process within the reconstruction. The method can accommodate kinetic models of any chosen complexity with relative ease, and can deliver more accurate kinetic parameter estimates than the conventional approach for low-statistics data.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 9781424405602</identifier><identifier>ISBN: 1424405602</identifier><identifier>EISSN: 2577-0829</identifier><identifier>EISBN: 1424405610</identifier><identifier>EISBN: 9781424405619</identifier><identifier>DOI: 10.1109/NSSMIC.2006.354235</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image analysis ; Image reconstruction ; Iterative methods ; Kinetic theory ; Maximum likelihood estimation ; Nuclear and plasma sciences ; Nuclear power generation ; Parameter estimation ; Positron emission tomography ; Spatiotemporal phenomena</subject><ispartof>2006 IEEE Nuclear Science Symposium Conference Record, 2006, Vol.3, p.1752-1756</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4179348$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4179348$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reader, A.J.</creatorcontrib><creatorcontrib>Matthews, J.C.</creatorcontrib><creatorcontrib>Sureau, F.C.</creatorcontrib><creatorcontrib>Comtat, C.</creatorcontrib><creatorcontrib>Trebossen, R.</creatorcontrib><creatorcontrib>Buvat, I.</creatorcontrib><title>Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction</title><title>2006 IEEE Nuclear Science Symposium Conference Record</title><addtitle>NSSMIC</addtitle><description>4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired parameters. Such a separated approach does not account for the task of kinetic parameter estimation within the reconstruction itself. This work indicates that conventional frame-by-frame maximum likelihood reconstruction in high noise situations is sub-optimal if post-reconstruction kinetic parameter estimation is to be performed. As an alternative, a simple to implement, EM-based iterative reconstruction method is proposed which uses all of the acquired data in every iteration and includes the image-space kinetic parameter estimation process within the reconstruction. The method can accommodate kinetic models of any chosen complexity with relative ease, and can deliver more accurate kinetic parameter estimates than the conventional approach for low-statistics data.</description><subject>Image analysis</subject><subject>Image reconstruction</subject><subject>Iterative methods</subject><subject>Kinetic theory</subject><subject>Maximum likelihood estimation</subject><subject>Nuclear and plasma sciences</subject><subject>Nuclear power generation</subject><subject>Parameter estimation</subject><subject>Positron emission tomography</subject><subject>Spatiotemporal phenomena</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>9781424405602</isbn><isbn>1424405602</isbn><isbn>1424405610</isbn><isbn>9781424405619</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1TttOwkAUXG-JgPyAvuwPFM-ePe12Hw2CNqIQwWfSbk91DRTTLhr-3hr1ZSZzyWSEuFQwUgrs9dNy-ZiNRwiQjHRMqOMj0VeERBAnCo5FD2NjIkjRnoihNel_BngqeqrzI53EdC76bfsOgKCJemKeBW7y4D9ZPviag3dykTf5ljtbTtrgt124q-WXD2--ltP9ZnOQdCsXk5XMtvkry2d2u7oNzd79FC_EWZVvWh7-8UC8TCer8X00m99l45tZ5BApRFSVhbMF68QRA5jUATI6JNuBKipjVEFOVwy6TErEspNp5ZxBWyEx6oG4-t31zLz-aLqfzWFNylhNqf4GCqVTUw</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Reader, A.J.</creator><creator>Matthews, J.C.</creator><creator>Sureau, F.C.</creator><creator>Comtat, C.</creator><creator>Trebossen, R.</creator><creator>Buvat, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction</title><author>Reader, A.J. ; Matthews, J.C. ; Sureau, F.C. ; Comtat, C. ; Trebossen, R. ; Buvat, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Image analysis</topic><topic>Image reconstruction</topic><topic>Iterative methods</topic><topic>Kinetic theory</topic><topic>Maximum likelihood estimation</topic><topic>Nuclear and plasma sciences</topic><topic>Nuclear power generation</topic><topic>Parameter estimation</topic><topic>Positron emission tomography</topic><topic>Spatiotemporal phenomena</topic><toplevel>online_resources</toplevel><creatorcontrib>Reader, A.J.</creatorcontrib><creatorcontrib>Matthews, J.C.</creatorcontrib><creatorcontrib>Sureau, F.C.</creatorcontrib><creatorcontrib>Comtat, C.</creatorcontrib><creatorcontrib>Trebossen, R.</creatorcontrib><creatorcontrib>Buvat, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reader, A.J.</au><au>Matthews, J.C.</au><au>Sureau, F.C.</au><au>Comtat, C.</au><au>Trebossen, R.</au><au>Buvat, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction</atitle><btitle>2006 IEEE Nuclear Science Symposium Conference Record</btitle><stitle>NSSMIC</stitle><date>2006-10</date><risdate>2006</risdate><volume>3</volume><spage>1752</spage><epage>1756</epage><pages>1752-1756</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>9781424405602</isbn><isbn>1424405602</isbn><eisbn>1424405610</eisbn><eisbn>9781424405619</eisbn><abstract>4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired parameters. Such a separated approach does not account for the task of kinetic parameter estimation within the reconstruction itself. This work indicates that conventional frame-by-frame maximum likelihood reconstruction in high noise situations is sub-optimal if post-reconstruction kinetic parameter estimation is to be performed. As an alternative, a simple to implement, EM-based iterative reconstruction method is proposed which uses all of the acquired data in every iteration and includes the image-space kinetic parameter estimation process within the reconstruction. The method can accommodate kinetic models of any chosen complexity with relative ease, and can deliver more accurate kinetic parameter estimates than the conventional approach for low-statistics data.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2006.354235</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3654
ispartof 2006 IEEE Nuclear Science Symposium Conference Record, 2006, Vol.3, p.1752-1756
issn 1082-3654
2577-0829
language eng
recordid cdi_ieee_primary_4179348
source IEEE Xplore All Conference Series
subjects Image analysis
Image reconstruction
Iterative methods
Kinetic theory
Maximum likelihood estimation
Nuclear and plasma sciences
Nuclear power generation
Parameter estimation
Positron emission tomography
Spatiotemporal phenomena
title Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Iterative%20Kinetic%20Parameter%20Estimation%20within%20Fully%204D%20PET%20Image%20Reconstruction&rft.btitle=2006%20IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record&rft.au=Reader,%20A.J.&rft.date=2006-10&rft.volume=3&rft.spage=1752&rft.epage=1756&rft.pages=1752-1756&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=9781424405602&rft.isbn_list=1424405602&rft_id=info:doi/10.1109/NSSMIC.2006.354235&rft.eisbn=1424405610&rft.eisbn_list=9781424405619&rft_dat=%3Cieee_CHZPO%3E4179348%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4179348&rfr_iscdi=true