Loading…
Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction
4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23 |
---|---|
cites | |
container_end_page | 1756 |
container_issue | |
container_start_page | 1752 |
container_title | |
container_volume | 3 |
creator | Reader, A.J. Matthews, J.C. Sureau, F.C. Comtat, C. Trebossen, R. Buvat, I. |
description | 4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired parameters. Such a separated approach does not account for the task of kinetic parameter estimation within the reconstruction itself. This work indicates that conventional frame-by-frame maximum likelihood reconstruction in high noise situations is sub-optimal if post-reconstruction kinetic parameter estimation is to be performed. As an alternative, a simple to implement, EM-based iterative reconstruction method is proposed which uses all of the acquired data in every iteration and includes the image-space kinetic parameter estimation process within the reconstruction. The method can accommodate kinetic models of any chosen complexity with relative ease, and can deliver more accurate kinetic parameter estimates than the conventional approach for low-statistics data. |
doi_str_mv | 10.1109/NSSMIC.2006.354235 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4179348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4179348</ieee_id><sourcerecordid>4179348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23</originalsourceid><addsrcrecordid>eNo1TttOwkAUXG-JgPyAvuwPFM-ePe12Hw2CNqIQwWfSbk91DRTTLhr-3hr1ZSZzyWSEuFQwUgrs9dNy-ZiNRwiQjHRMqOMj0VeERBAnCo5FD2NjIkjRnoihNel_BngqeqrzI53EdC76bfsOgKCJemKeBW7y4D9ZPviag3dykTf5ljtbTtrgt124q-WXD2--ltP9ZnOQdCsXk5XMtvkry2d2u7oNzd79FC_EWZVvWh7-8UC8TCer8X00m99l45tZ5BApRFSVhbMF68QRA5jUATI6JNuBKipjVEFOVwy6TErEspNp5ZxBWyEx6oG4-t31zLz-aLqfzWFNylhNqf4GCqVTUw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction</title><source>IEEE Xplore All Conference Series</source><creator>Reader, A.J. ; Matthews, J.C. ; Sureau, F.C. ; Comtat, C. ; Trebossen, R. ; Buvat, I.</creator><creatorcontrib>Reader, A.J. ; Matthews, J.C. ; Sureau, F.C. ; Comtat, C. ; Trebossen, R. ; Buvat, I.</creatorcontrib><description>4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired parameters. Such a separated approach does not account for the task of kinetic parameter estimation within the reconstruction itself. This work indicates that conventional frame-by-frame maximum likelihood reconstruction in high noise situations is sub-optimal if post-reconstruction kinetic parameter estimation is to be performed. As an alternative, a simple to implement, EM-based iterative reconstruction method is proposed which uses all of the acquired data in every iteration and includes the image-space kinetic parameter estimation process within the reconstruction. The method can accommodate kinetic models of any chosen complexity with relative ease, and can deliver more accurate kinetic parameter estimates than the conventional approach for low-statistics data.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 9781424405602</identifier><identifier>ISBN: 1424405602</identifier><identifier>EISSN: 2577-0829</identifier><identifier>EISBN: 1424405610</identifier><identifier>EISBN: 9781424405619</identifier><identifier>DOI: 10.1109/NSSMIC.2006.354235</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image analysis ; Image reconstruction ; Iterative methods ; Kinetic theory ; Maximum likelihood estimation ; Nuclear and plasma sciences ; Nuclear power generation ; Parameter estimation ; Positron emission tomography ; Spatiotemporal phenomena</subject><ispartof>2006 IEEE Nuclear Science Symposium Conference Record, 2006, Vol.3, p.1752-1756</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4179348$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4179348$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reader, A.J.</creatorcontrib><creatorcontrib>Matthews, J.C.</creatorcontrib><creatorcontrib>Sureau, F.C.</creatorcontrib><creatorcontrib>Comtat, C.</creatorcontrib><creatorcontrib>Trebossen, R.</creatorcontrib><creatorcontrib>Buvat, I.</creatorcontrib><title>Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction</title><title>2006 IEEE Nuclear Science Symposium Conference Record</title><addtitle>NSSMIC</addtitle><description>4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired parameters. Such a separated approach does not account for the task of kinetic parameter estimation within the reconstruction itself. This work indicates that conventional frame-by-frame maximum likelihood reconstruction in high noise situations is sub-optimal if post-reconstruction kinetic parameter estimation is to be performed. As an alternative, a simple to implement, EM-based iterative reconstruction method is proposed which uses all of the acquired data in every iteration and includes the image-space kinetic parameter estimation process within the reconstruction. The method can accommodate kinetic models of any chosen complexity with relative ease, and can deliver more accurate kinetic parameter estimates than the conventional approach for low-statistics data.</description><subject>Image analysis</subject><subject>Image reconstruction</subject><subject>Iterative methods</subject><subject>Kinetic theory</subject><subject>Maximum likelihood estimation</subject><subject>Nuclear and plasma sciences</subject><subject>Nuclear power generation</subject><subject>Parameter estimation</subject><subject>Positron emission tomography</subject><subject>Spatiotemporal phenomena</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>9781424405602</isbn><isbn>1424405602</isbn><isbn>1424405610</isbn><isbn>9781424405619</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1TttOwkAUXG-JgPyAvuwPFM-ePe12Hw2CNqIQwWfSbk91DRTTLhr-3hr1ZSZzyWSEuFQwUgrs9dNy-ZiNRwiQjHRMqOMj0VeERBAnCo5FD2NjIkjRnoihNel_BngqeqrzI53EdC76bfsOgKCJemKeBW7y4D9ZPviag3dykTf5ljtbTtrgt124q-WXD2--ltP9ZnOQdCsXk5XMtvkry2d2u7oNzd79FC_EWZVvWh7-8UC8TCer8X00m99l45tZ5BApRFSVhbMF68QRA5jUATI6JNuBKipjVEFOVwy6TErEspNp5ZxBWyEx6oG4-t31zLz-aLqfzWFNylhNqf4GCqVTUw</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Reader, A.J.</creator><creator>Matthews, J.C.</creator><creator>Sureau, F.C.</creator><creator>Comtat, C.</creator><creator>Trebossen, R.</creator><creator>Buvat, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction</title><author>Reader, A.J. ; Matthews, J.C. ; Sureau, F.C. ; Comtat, C. ; Trebossen, R. ; Buvat, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Image analysis</topic><topic>Image reconstruction</topic><topic>Iterative methods</topic><topic>Kinetic theory</topic><topic>Maximum likelihood estimation</topic><topic>Nuclear and plasma sciences</topic><topic>Nuclear power generation</topic><topic>Parameter estimation</topic><topic>Positron emission tomography</topic><topic>Spatiotemporal phenomena</topic><toplevel>online_resources</toplevel><creatorcontrib>Reader, A.J.</creatorcontrib><creatorcontrib>Matthews, J.C.</creatorcontrib><creatorcontrib>Sureau, F.C.</creatorcontrib><creatorcontrib>Comtat, C.</creatorcontrib><creatorcontrib>Trebossen, R.</creatorcontrib><creatorcontrib>Buvat, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reader, A.J.</au><au>Matthews, J.C.</au><au>Sureau, F.C.</au><au>Comtat, C.</au><au>Trebossen, R.</au><au>Buvat, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction</atitle><btitle>2006 IEEE Nuclear Science Symposium Conference Record</btitle><stitle>NSSMIC</stitle><date>2006-10</date><risdate>2006</risdate><volume>3</volume><spage>1752</spage><epage>1756</epage><pages>1752-1756</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>9781424405602</isbn><isbn>1424405602</isbn><eisbn>1424405610</eisbn><eisbn>9781424405619</eisbn><abstract>4D PET imaging seeks to estimate kinetic parameters of physiological significance through the generation of a time series of 3D images. Conventionally the time series is reconstructed one frame at a time, and then the kinetic modeling is applied as a post-reconstruction step to estimate the desired parameters. Such a separated approach does not account for the task of kinetic parameter estimation within the reconstruction itself. This work indicates that conventional frame-by-frame maximum likelihood reconstruction in high noise situations is sub-optimal if post-reconstruction kinetic parameter estimation is to be performed. As an alternative, a simple to implement, EM-based iterative reconstruction method is proposed which uses all of the acquired data in every iteration and includes the image-space kinetic parameter estimation process within the reconstruction. The method can accommodate kinetic models of any chosen complexity with relative ease, and can deliver more accurate kinetic parameter estimates than the conventional approach for low-statistics data.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2006.354235</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1082-3654 |
ispartof | 2006 IEEE Nuclear Science Symposium Conference Record, 2006, Vol.3, p.1752-1756 |
issn | 1082-3654 2577-0829 |
language | eng |
recordid | cdi_ieee_primary_4179348 |
source | IEEE Xplore All Conference Series |
subjects | Image analysis Image reconstruction Iterative methods Kinetic theory Maximum likelihood estimation Nuclear and plasma sciences Nuclear power generation Parameter estimation Positron emission tomography Spatiotemporal phenomena |
title | Iterative Kinetic Parameter Estimation within Fully 4D PET Image Reconstruction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Iterative%20Kinetic%20Parameter%20Estimation%20within%20Fully%204D%20PET%20Image%20Reconstruction&rft.btitle=2006%20IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record&rft.au=Reader,%20A.J.&rft.date=2006-10&rft.volume=3&rft.spage=1752&rft.epage=1756&rft.pages=1752-1756&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=9781424405602&rft.isbn_list=1424405602&rft_id=info:doi/10.1109/NSSMIC.2006.354235&rft.eisbn=1424405610&rft.eisbn_list=9781424405619&rft_dat=%3Cieee_CHZPO%3E4179348%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-4fdbc9be36c4e0078c02e2c2492c21bf771b4c3fe03d6d22d1b48fcc729f24e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4179348&rfr_iscdi=true |