Loading…

MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET

Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we p...

Full description

Saved in:
Bibliographic Details
Main Authors: Guobao Wang, Jinyi Qi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 164
container_issue
container_start_page 161
container_title
container_volume
creator Guobao Wang
Jinyi Qi
description Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by combining the Patlak plot model with image reconstruction. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. We conduct computer simulations to validate the proposed method. The comparison with conventional indirect approaches shows that the proposed method results in more accurate estimate of the parametric image
doi_str_mv 10.1109/ISBI.2007.356813
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4193247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4193247</ieee_id><sourcerecordid>4193247</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e97d4ae130bc6ecc81a55d8341f0e2730e26a906527d7629d8bf1efd4c1302e53</originalsourceid><addsrcrecordid>eNo1jEtLAzEYReMLrLV7wU3-wNR8eWcZx2kNNpOSSUFBKNOZDFQUxLrx3ztgvYt7Fod7EboBMgcg5s41925OCVFzJqQGdoJmRmnglHMiFaWnaAKGi0JzQc_Q1b8Afn4UylB9iWaHwxsZwwyTQkzQq7fPzm88tngdmlRFF6LDsSpD3aS4KZMLNQ4LvLZpZZ9GROurFF2JnbfLCi9i8LhxdViOosGuxg8vtfWjX1fpGl0M7fshz46cos2iSuVjsQpLV9pVsQclvotsVM_bDIzsOpm7TkMrRK8Zh4FkqthYsjVECqp6Janp9W6APPS8Gyc0CzZFt3-_-5zz9vNr_9F-_Ww5GEa5Yr8AmU8c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guobao Wang ; Jinyi Qi</creator><creatorcontrib>Guobao Wang ; Jinyi Qi</creatorcontrib><description>Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by combining the Patlak plot model with image reconstruction. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. We conduct computer simulations to validate the proposed method. The comparison with conventional indirect approaches shows that the proposed method results in more accurate estimate of the parametric image</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424406714</identifier><identifier>ISBN: 9781424406715</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781424406722</identifier><identifier>EISBN: 1424406722</identifier><identifier>DOI: 10.1109/ISBI.2007.356813</identifier><language>eng</language><subject>Bayesian methods ; Data analysis ; Image analysis ; Image generation ; Image reconstruction ; Kinetic theory ; Parameter estimation ; Pixel ; Positron emission tomography ; Statistical analysis</subject><ispartof>2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, p.161-164</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4193247$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4193247$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guobao Wang</creatorcontrib><creatorcontrib>Jinyi Qi</creatorcontrib><title>MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET</title><title>2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by combining the Patlak plot model with image reconstruction. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. We conduct computer simulations to validate the proposed method. The comparison with conventional indirect approaches shows that the proposed method results in more accurate estimate of the parametric image</description><subject>Bayesian methods</subject><subject>Data analysis</subject><subject>Image analysis</subject><subject>Image generation</subject><subject>Image reconstruction</subject><subject>Kinetic theory</subject><subject>Parameter estimation</subject><subject>Pixel</subject><subject>Positron emission tomography</subject><subject>Statistical analysis</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424406714</isbn><isbn>9781424406715</isbn><isbn>9781424406722</isbn><isbn>1424406722</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jEtLAzEYReMLrLV7wU3-wNR8eWcZx2kNNpOSSUFBKNOZDFQUxLrx3ztgvYt7Fod7EboBMgcg5s41925OCVFzJqQGdoJmRmnglHMiFaWnaAKGi0JzQc_Q1b8Afn4UylB9iWaHwxsZwwyTQkzQq7fPzm88tngdmlRFF6LDsSpD3aS4KZMLNQ4LvLZpZZ9GROurFF2JnbfLCi9i8LhxdViOosGuxg8vtfWjX1fpGl0M7fshz46cos2iSuVjsQpLV9pVsQclvotsVM_bDIzsOpm7TkMrRK8Zh4FkqthYsjVECqp6Janp9W6APPS8Gyc0CzZFt3-_-5zz9vNr_9F-_Ww5GEa5Yr8AmU8c</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Guobao Wang</creator><creator>Jinyi Qi</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200704</creationdate><title>MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET</title><author>Guobao Wang ; Jinyi Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e97d4ae130bc6ecc81a55d8341f0e2730e26a906527d7629d8bf1efd4c1302e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Data analysis</topic><topic>Image analysis</topic><topic>Image generation</topic><topic>Image reconstruction</topic><topic>Kinetic theory</topic><topic>Parameter estimation</topic><topic>Pixel</topic><topic>Positron emission tomography</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Guobao Wang</creatorcontrib><creatorcontrib>Jinyi Qi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guobao Wang</au><au>Jinyi Qi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET</atitle><btitle>2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2007-04</date><risdate>2007</risdate><spage>161</spage><epage>164</epage><pages>161-164</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424406714</isbn><isbn>9781424406715</isbn><eisbn>9781424406722</eisbn><eisbn>1424406722</eisbn><abstract>Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by combining the Patlak plot model with image reconstruction. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. We conduct computer simulations to validate the proposed method. The comparison with conventional indirect approaches shows that the proposed method results in more accurate estimate of the parametric image</abstract><doi>10.1109/ISBI.2007.356813</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, p.161-164
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_4193247
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Data analysis
Image analysis
Image generation
Image reconstruction
Kinetic theory
Parameter estimation
Pixel
Positron emission tomography
Statistical analysis
title MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MAXIMUM%20A%20POSTERIORI%20RECONSTRUCTION%20OF%20PATLAK%20PARAMETRIC%20IMAGE%20FROM%20SINOGRAMS%20IN%20DYNAMIC%20PET&rft.btitle=2007%204th%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Guobao%20Wang&rft.date=2007-04&rft.spage=161&rft.epage=164&rft.pages=161-164&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424406714&rft.isbn_list=9781424406715&rft_id=info:doi/10.1109/ISBI.2007.356813&rft.eisbn=9781424406722&rft.eisbn_list=1424406722&rft_dat=%3Cieee_6IE%3E4193247%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e97d4ae130bc6ecc81a55d8341f0e2730e26a906527d7629d8bf1efd4c1302e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4193247&rfr_iscdi=true