Loading…
MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET
Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we p...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 164 |
container_issue | |
container_start_page | 161 |
container_title | |
container_volume | |
creator | Guobao Wang Jinyi Qi |
description | Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by combining the Patlak plot model with image reconstruction. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. We conduct computer simulations to validate the proposed method. The comparison with conventional indirect approaches shows that the proposed method results in more accurate estimate of the parametric image |
doi_str_mv | 10.1109/ISBI.2007.356813 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4193247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4193247</ieee_id><sourcerecordid>4193247</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e97d4ae130bc6ecc81a55d8341f0e2730e26a906527d7629d8bf1efd4c1302e53</originalsourceid><addsrcrecordid>eNo1jEtLAzEYReMLrLV7wU3-wNR8eWcZx2kNNpOSSUFBKNOZDFQUxLrx3ztgvYt7Fod7EboBMgcg5s41925OCVFzJqQGdoJmRmnglHMiFaWnaAKGi0JzQc_Q1b8Afn4UylB9iWaHwxsZwwyTQkzQq7fPzm88tngdmlRFF6LDsSpD3aS4KZMLNQ4LvLZpZZ9GROurFF2JnbfLCi9i8LhxdViOosGuxg8vtfWjX1fpGl0M7fshz46cos2iSuVjsQpLV9pVsQclvotsVM_bDIzsOpm7TkMrRK8Zh4FkqthYsjVECqp6Janp9W6APPS8Gyc0CzZFt3-_-5zz9vNr_9F-_Ww5GEa5Yr8AmU8c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guobao Wang ; Jinyi Qi</creator><creatorcontrib>Guobao Wang ; Jinyi Qi</creatorcontrib><description>Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by combining the Patlak plot model with image reconstruction. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. We conduct computer simulations to validate the proposed method. The comparison with conventional indirect approaches shows that the proposed method results in more accurate estimate of the parametric image</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424406714</identifier><identifier>ISBN: 9781424406715</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781424406722</identifier><identifier>EISBN: 1424406722</identifier><identifier>DOI: 10.1109/ISBI.2007.356813</identifier><language>eng</language><subject>Bayesian methods ; Data analysis ; Image analysis ; Image generation ; Image reconstruction ; Kinetic theory ; Parameter estimation ; Pixel ; Positron emission tomography ; Statistical analysis</subject><ispartof>2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, p.161-164</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4193247$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4193247$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guobao Wang</creatorcontrib><creatorcontrib>Jinyi Qi</creatorcontrib><title>MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET</title><title>2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by combining the Patlak plot model with image reconstruction. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. We conduct computer simulations to validate the proposed method. The comparison with conventional indirect approaches shows that the proposed method results in more accurate estimate of the parametric image</description><subject>Bayesian methods</subject><subject>Data analysis</subject><subject>Image analysis</subject><subject>Image generation</subject><subject>Image reconstruction</subject><subject>Kinetic theory</subject><subject>Parameter estimation</subject><subject>Pixel</subject><subject>Positron emission tomography</subject><subject>Statistical analysis</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424406714</isbn><isbn>9781424406715</isbn><isbn>9781424406722</isbn><isbn>1424406722</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jEtLAzEYReMLrLV7wU3-wNR8eWcZx2kNNpOSSUFBKNOZDFQUxLrx3ztgvYt7Fod7EboBMgcg5s41925OCVFzJqQGdoJmRmnglHMiFaWnaAKGi0JzQc_Q1b8Afn4UylB9iWaHwxsZwwyTQkzQq7fPzm88tngdmlRFF6LDsSpD3aS4KZMLNQ4LvLZpZZ9GROurFF2JnbfLCi9i8LhxdViOosGuxg8vtfWjX1fpGl0M7fshz46cos2iSuVjsQpLV9pVsQclvotsVM_bDIzsOpm7TkMrRK8Zh4FkqthYsjVECqp6Janp9W6APPS8Gyc0CzZFt3-_-5zz9vNr_9F-_Ww5GEa5Yr8AmU8c</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Guobao Wang</creator><creator>Jinyi Qi</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200704</creationdate><title>MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET</title><author>Guobao Wang ; Jinyi Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e97d4ae130bc6ecc81a55d8341f0e2730e26a906527d7629d8bf1efd4c1302e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian methods</topic><topic>Data analysis</topic><topic>Image analysis</topic><topic>Image generation</topic><topic>Image reconstruction</topic><topic>Kinetic theory</topic><topic>Parameter estimation</topic><topic>Pixel</topic><topic>Positron emission tomography</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Guobao Wang</creatorcontrib><creatorcontrib>Jinyi Qi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guobao Wang</au><au>Jinyi Qi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET</atitle><btitle>2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2007-04</date><risdate>2007</risdate><spage>161</spage><epage>164</epage><pages>161-164</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424406714</isbn><isbn>9781424406715</isbn><eisbn>9781424406722</eisbn><eisbn>1424406722</eisbn><abstract>Parametric imaging using Patlak graphical method has been widely used to analyze dynamic PET data. The conventional way to generate Patlak parametric image is to reconstruct dynamic images first and then perform Patlak graphical analysis on the time activity curves pixel-by-pixel. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by combining the Patlak plot model with image reconstruction. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. We conduct computer simulations to validate the proposed method. The comparison with conventional indirect approaches shows that the proposed method results in more accurate estimate of the parametric image</abstract><doi>10.1109/ISBI.2007.356813</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, p.161-164 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_4193247 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Data analysis Image analysis Image generation Image reconstruction Kinetic theory Parameter estimation Pixel Positron emission tomography Statistical analysis |
title | MAXIMUM A POSTERIORI RECONSTRUCTION OF PATLAK PARAMETRIC IMAGE FROM SINOGRAMS IN DYNAMIC PET |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MAXIMUM%20A%20POSTERIORI%20RECONSTRUCTION%20OF%20PATLAK%20PARAMETRIC%20IMAGE%20FROM%20SINOGRAMS%20IN%20DYNAMIC%20PET&rft.btitle=2007%204th%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Guobao%20Wang&rft.date=2007-04&rft.spage=161&rft.epage=164&rft.pages=161-164&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424406714&rft.isbn_list=9781424406715&rft_id=info:doi/10.1109/ISBI.2007.356813&rft.eisbn=9781424406722&rft.eisbn_list=1424406722&rft_dat=%3Cieee_6IE%3E4193247%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e97d4ae130bc6ecc81a55d8341f0e2730e26a906527d7629d8bf1efd4c1302e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4193247&rfr_iscdi=true |