Loading…

PULMONARY NODULE CLASSIFICATION: SIZE DISTRIBUTION ISSUES

Automated nodule classification systems determine a model based on features extracted from documented databases of nodules. These databases cover a large size range and have an unequal distribution of malignant and benign nodules, leading to a high correlation between malignancy and size. For two re...

Full description

Saved in:
Bibliographic Details
Main Authors: Jirapatnakul, A.C., Reeves, A.P., Apanasovich, T.V., Biancardi, A.M., Yankelevitz, D.F., Henschke, C.I.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1251
container_issue
container_start_page 1248
container_title
container_volume
creator Jirapatnakul, A.C.
Reeves, A.P.
Apanasovich, T.V.
Biancardi, A.M.
Yankelevitz, D.F.
Henschke, C.I.
description Automated nodule classification systems determine a model based on features extracted from documented databases of nodules. These databases cover a large size range and have an unequal distribution of malignant and benign nodules, leading to a high correlation between malignancy and size. For two recent studies in the literature, much of the reported performance of the system may be derived from size based on analysis of their size distributions. We performed experiments to determine the effect of unequal size distribution on a nodule classification system's performance. Preliminary results indicate that the performance across the entire dataset (a sensitivity/specificity of 0.85/0.80) does not generalize to a subset of nodules (0.50/0.80), but performance can be improved by specifically training on that subset (0.60/0.80). Additional testing with larger datasets needs to be performed, but results reported in this area are overly optimistic.
doi_str_mv 10.1109/ISBI.2007.357085
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4193519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4193519</ieee_id><sourcerecordid>4193519</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b0229729a2f656333efb9c59394e69fd06fd57b2278aeb59ebf1d9592b2f4c853</originalsourceid><addsrcrecordid>eNo1jE9LxDAUxOM_cF17F7z0C7QmL3lNn7dut6uB2sqmPehlabcJVBRk68Vvb8V1YBiYHzOM3QgeC8HpztiViYFzHUvUPMUTFpBOhQKleKIBTtlCkMIoVQhn7OofCHV-BJogvWTBNL3xWZJkgrhg9NyWT3WVbV_Cql63ZRHmZWat2Zg8a0xd3YfWvBbh2thma1btbxUaa9vCXrML371PLjjmkrWboskfo7J-mMdlNAqNX1HPAUgDdeATTKSUzve0R5KkXEJ-4IkfUPcAOu1cj-R6LwZCgh682qcol-z273d0zu0-D-NHd_jeKUESZ_8A4DpF6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>PULMONARY NODULE CLASSIFICATION: SIZE DISTRIBUTION ISSUES</title><source>IEEE Xplore All Conference Series</source><creator>Jirapatnakul, A.C. ; Reeves, A.P. ; Apanasovich, T.V. ; Biancardi, A.M. ; Yankelevitz, D.F. ; Henschke, C.I.</creator><creatorcontrib>Jirapatnakul, A.C. ; Reeves, A.P. ; Apanasovich, T.V. ; Biancardi, A.M. ; Yankelevitz, D.F. ; Henschke, C.I.</creatorcontrib><description>Automated nodule classification systems determine a model based on features extracted from documented databases of nodules. These databases cover a large size range and have an unequal distribution of malignant and benign nodules, leading to a high correlation between malignancy and size. For two recent studies in the literature, much of the reported performance of the system may be derived from size based on analysis of their size distributions. We performed experiments to determine the effect of unequal size distribution on a nodule classification system's performance. Preliminary results indicate that the performance across the entire dataset (a sensitivity/specificity of 0.85/0.80) does not generalize to a subset of nodules (0.50/0.80), but performance can be improved by specifically training on that subset (0.60/0.80). Additional testing with larger datasets needs to be performed, but results reported in this area are overly optimistic.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424406714</identifier><identifier>ISBN: 9781424406715</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781424406722</identifier><identifier>EISBN: 1424406722</identifier><identifier>DOI: 10.1109/ISBI.2007.357085</identifier><language>eng</language><subject>Biomedical engineering ; Cancer ; Computed tomography ; Educational institutions ; Feature extraction ; Industrial engineering ; Lesions ; Operations research ; Sensitivity and specificity ; Spatial databases</subject><ispartof>2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, p.1248-1251</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4193519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4193519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jirapatnakul, A.C.</creatorcontrib><creatorcontrib>Reeves, A.P.</creatorcontrib><creatorcontrib>Apanasovich, T.V.</creatorcontrib><creatorcontrib>Biancardi, A.M.</creatorcontrib><creatorcontrib>Yankelevitz, D.F.</creatorcontrib><creatorcontrib>Henschke, C.I.</creatorcontrib><title>PULMONARY NODULE CLASSIFICATION: SIZE DISTRIBUTION ISSUES</title><title>2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>Automated nodule classification systems determine a model based on features extracted from documented databases of nodules. These databases cover a large size range and have an unequal distribution of malignant and benign nodules, leading to a high correlation between malignancy and size. For two recent studies in the literature, much of the reported performance of the system may be derived from size based on analysis of their size distributions. We performed experiments to determine the effect of unequal size distribution on a nodule classification system's performance. Preliminary results indicate that the performance across the entire dataset (a sensitivity/specificity of 0.85/0.80) does not generalize to a subset of nodules (0.50/0.80), but performance can be improved by specifically training on that subset (0.60/0.80). Additional testing with larger datasets needs to be performed, but results reported in this area are overly optimistic.</description><subject>Biomedical engineering</subject><subject>Cancer</subject><subject>Computed tomography</subject><subject>Educational institutions</subject><subject>Feature extraction</subject><subject>Industrial engineering</subject><subject>Lesions</subject><subject>Operations research</subject><subject>Sensitivity and specificity</subject><subject>Spatial databases</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424406714</isbn><isbn>9781424406715</isbn><isbn>9781424406722</isbn><isbn>1424406722</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jE9LxDAUxOM_cF17F7z0C7QmL3lNn7dut6uB2sqmPehlabcJVBRk68Vvb8V1YBiYHzOM3QgeC8HpztiViYFzHUvUPMUTFpBOhQKleKIBTtlCkMIoVQhn7OofCHV-BJogvWTBNL3xWZJkgrhg9NyWT3WVbV_Cql63ZRHmZWat2Zg8a0xd3YfWvBbh2thma1btbxUaa9vCXrML371PLjjmkrWboskfo7J-mMdlNAqNX1HPAUgDdeATTKSUzve0R5KkXEJ-4IkfUPcAOu1cj-R6LwZCgh682qcol-z273d0zu0-D-NHd_jeKUESZ_8A4DpF6Q</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Jirapatnakul, A.C.</creator><creator>Reeves, A.P.</creator><creator>Apanasovich, T.V.</creator><creator>Biancardi, A.M.</creator><creator>Yankelevitz, D.F.</creator><creator>Henschke, C.I.</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200704</creationdate><title>PULMONARY NODULE CLASSIFICATION: SIZE DISTRIBUTION ISSUES</title><author>Jirapatnakul, A.C. ; Reeves, A.P. ; Apanasovich, T.V. ; Biancardi, A.M. ; Yankelevitz, D.F. ; Henschke, C.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b0229729a2f656333efb9c59394e69fd06fd57b2278aeb59ebf1d9592b2f4c853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biomedical engineering</topic><topic>Cancer</topic><topic>Computed tomography</topic><topic>Educational institutions</topic><topic>Feature extraction</topic><topic>Industrial engineering</topic><topic>Lesions</topic><topic>Operations research</topic><topic>Sensitivity and specificity</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Jirapatnakul, A.C.</creatorcontrib><creatorcontrib>Reeves, A.P.</creatorcontrib><creatorcontrib>Apanasovich, T.V.</creatorcontrib><creatorcontrib>Biancardi, A.M.</creatorcontrib><creatorcontrib>Yankelevitz, D.F.</creatorcontrib><creatorcontrib>Henschke, C.I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jirapatnakul, A.C.</au><au>Reeves, A.P.</au><au>Apanasovich, T.V.</au><au>Biancardi, A.M.</au><au>Yankelevitz, D.F.</au><au>Henschke, C.I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PULMONARY NODULE CLASSIFICATION: SIZE DISTRIBUTION ISSUES</atitle><btitle>2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2007-04</date><risdate>2007</risdate><spage>1248</spage><epage>1251</epage><pages>1248-1251</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424406714</isbn><isbn>9781424406715</isbn><eisbn>9781424406722</eisbn><eisbn>1424406722</eisbn><abstract>Automated nodule classification systems determine a model based on features extracted from documented databases of nodules. These databases cover a large size range and have an unequal distribution of malignant and benign nodules, leading to a high correlation between malignancy and size. For two recent studies in the literature, much of the reported performance of the system may be derived from size based on analysis of their size distributions. We performed experiments to determine the effect of unequal size distribution on a nodule classification system's performance. Preliminary results indicate that the performance across the entire dataset (a sensitivity/specificity of 0.85/0.80) does not generalize to a subset of nodules (0.50/0.80), but performance can be improved by specifically training on that subset (0.60/0.80). Additional testing with larger datasets needs to be performed, but results reported in this area are overly optimistic.</abstract><doi>10.1109/ISBI.2007.357085</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, p.1248-1251
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_4193519
source IEEE Xplore All Conference Series
subjects Biomedical engineering
Cancer
Computed tomography
Educational institutions
Feature extraction
Industrial engineering
Lesions
Operations research
Sensitivity and specificity
Spatial databases
title PULMONARY NODULE CLASSIFICATION: SIZE DISTRIBUTION ISSUES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PULMONARY%20NODULE%20CLASSIFICATION:%20SIZE%20DISTRIBUTION%20ISSUES&rft.btitle=2007%204th%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Jirapatnakul,%20A.C.&rft.date=2007-04&rft.spage=1248&rft.epage=1251&rft.pages=1248-1251&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424406714&rft.isbn_list=9781424406715&rft_id=info:doi/10.1109/ISBI.2007.357085&rft.eisbn=9781424406722&rft.eisbn_list=1424406722&rft_dat=%3Cieee_CHZPO%3E4193519%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b0229729a2f656333efb9c59394e69fd06fd57b2278aeb59ebf1d9592b2f4c853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4193519&rfr_iscdi=true