Loading…

Electric Load Forecasting Using Support Vector Machines Optimized by Genetic Algorithm

Electric load forecasting has become an important research area for secure operation and management of the modern power systems. In this paper we have proposed a seven support vector machines model for daily peak load demand long range forecasting. One support vector machine for each day of the week...

Full description

Saved in:
Bibliographic Details
Main Authors: Abbas, S.R., Arif, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 399
container_issue
container_start_page 395
container_title
container_volume
creator Abbas, S.R.
Arif, M.
description Electric load forecasting has become an important research area for secure operation and management of the modern power systems. In this paper we have proposed a seven support vector machines model for daily peak load demand long range forecasting. One support vector machine for each day of the week is trained on the past data and then used for the forecasting. In tuning process of support vector machines there are few parameters to optimize. We have used genetic algorithm for optimization of these parameters. The proposed model is evaluated on the electric load data used in EUNITE load competition in 2001 arranged by East-Slovakia Power Distribution Company. A better result is found as compare to best result found in the competition.
doi_str_mv 10.1109/INMIC.2006.358199
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4196442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4196442</ieee_id><sourcerecordid>4196442</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6d2ea4b2a3b4a2c9a1ccada2a6f413441e3cd992b176ca56cee84e96b0e590533</originalsourceid><addsrcrecordid>eNpFjs1Kw0AUhUdEUGsfQNzMC6TOz82ksyyhf5Dahba4KzeT23YkacJkXNSnt6Lg5hwOfHwcxh6lGEkp7PPyZbXMR0oIM9LpWFp7xe4lKACR2XR8_T_g_ZYN-_5DCCEzo62FO7ad1uRi8I4XLVZ81gZy2Ed_OvBN_5Ovn13Xhsi3F6wNfIXu6E_U83UXfeO_qOLlmc_pRPHimNSHNvh4bB7YzR7rnoZ_PWCb2fQtXyTFer7MJ0XiZZbGxFSKEEqFugRUzqJ0DitUaPYgNYAk7SprVXn56zA1jmgMZE0pKLUi1XrAnn69noh2XfANhvMOpDUASn8DSW5Snw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Electric Load Forecasting Using Support Vector Machines Optimized by Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abbas, S.R. ; Arif, M.</creator><creatorcontrib>Abbas, S.R. ; Arif, M.</creatorcontrib><description>Electric load forecasting has become an important research area for secure operation and management of the modern power systems. In this paper we have proposed a seven support vector machines model for daily peak load demand long range forecasting. One support vector machine for each day of the week is trained on the past data and then used for the forecasting. In tuning process of support vector machines there are few parameters to optimize. We have used genetic algorithm for optimization of these parameters. The proposed model is evaluated on the electric load data used in EUNITE load competition in 2001 arranged by East-Slovakia Power Distribution Company. A better result is found as compare to best result found in the competition.</description><identifier>ISBN: 142440794X</identifier><identifier>ISBN: 9781424407941</identifier><identifier>EISBN: 1424407958</identifier><identifier>EISBN: 9781424407958</identifier><identifier>DOI: 10.1109/INMIC.2006.358199</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Autoregressive processes ; Electric load forecasting ; Energy management ; genetic algorithm ; Genetic algorithms ; Load forecasting ; Power system management ; Power system reliability ; Support vector machine classification ; Support vector machines ; time series forecasting</subject><ispartof>2006 IEEE International Multitopic Conference, 2006, p.395-399</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4196442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4196442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abbas, S.R.</creatorcontrib><creatorcontrib>Arif, M.</creatorcontrib><title>Electric Load Forecasting Using Support Vector Machines Optimized by Genetic Algorithm</title><title>2006 IEEE International Multitopic Conference</title><addtitle>INMIC</addtitle><description>Electric load forecasting has become an important research area for secure operation and management of the modern power systems. In this paper we have proposed a seven support vector machines model for daily peak load demand long range forecasting. One support vector machine for each day of the week is trained on the past data and then used for the forecasting. In tuning process of support vector machines there are few parameters to optimize. We have used genetic algorithm for optimization of these parameters. The proposed model is evaluated on the electric load data used in EUNITE load competition in 2001 arranged by East-Slovakia Power Distribution Company. A better result is found as compare to best result found in the competition.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Autoregressive processes</subject><subject>Electric load forecasting</subject><subject>Energy management</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Load forecasting</subject><subject>Power system management</subject><subject>Power system reliability</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>time series forecasting</subject><isbn>142440794X</isbn><isbn>9781424407941</isbn><isbn>1424407958</isbn><isbn>9781424407958</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFjs1Kw0AUhUdEUGsfQNzMC6TOz82ksyyhf5Dahba4KzeT23YkacJkXNSnt6Lg5hwOfHwcxh6lGEkp7PPyZbXMR0oIM9LpWFp7xe4lKACR2XR8_T_g_ZYN-_5DCCEzo62FO7ad1uRi8I4XLVZ81gZy2Ed_OvBN_5Ovn13Xhsi3F6wNfIXu6E_U83UXfeO_qOLlmc_pRPHimNSHNvh4bB7YzR7rnoZ_PWCb2fQtXyTFer7MJ0XiZZbGxFSKEEqFugRUzqJ0DitUaPYgNYAk7SprVXn56zA1jmgMZE0pKLUi1XrAnn69noh2XfANhvMOpDUASn8DSW5Snw</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Abbas, S.R.</creator><creator>Arif, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Electric Load Forecasting Using Support Vector Machines Optimized by Genetic Algorithm</title><author>Abbas, S.R. ; Arif, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6d2ea4b2a3b4a2c9a1ccada2a6f413441e3cd992b176ca56cee84e96b0e590533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Autoregressive processes</topic><topic>Electric load forecasting</topic><topic>Energy management</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Load forecasting</topic><topic>Power system management</topic><topic>Power system reliability</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>time series forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Abbas, S.R.</creatorcontrib><creatorcontrib>Arif, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abbas, S.R.</au><au>Arif, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Electric Load Forecasting Using Support Vector Machines Optimized by Genetic Algorithm</atitle><btitle>2006 IEEE International Multitopic Conference</btitle><stitle>INMIC</stitle><date>2006-12</date><risdate>2006</risdate><spage>395</spage><epage>399</epage><pages>395-399</pages><isbn>142440794X</isbn><isbn>9781424407941</isbn><eisbn>1424407958</eisbn><eisbn>9781424407958</eisbn><abstract>Electric load forecasting has become an important research area for secure operation and management of the modern power systems. In this paper we have proposed a seven support vector machines model for daily peak load demand long range forecasting. One support vector machine for each day of the week is trained on the past data and then used for the forecasting. In tuning process of support vector machines there are few parameters to optimize. We have used genetic algorithm for optimization of these parameters. The proposed model is evaluated on the electric load data used in EUNITE load competition in 2001 arranged by East-Slovakia Power Distribution Company. A better result is found as compare to best result found in the competition.</abstract><pub>IEEE</pub><doi>10.1109/INMIC.2006.358199</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142440794X
ispartof 2006 IEEE International Multitopic Conference, 2006, p.395-399
issn
language eng
recordid cdi_ieee_primary_4196442
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Artificial neural networks
Autoregressive processes
Electric load forecasting
Energy management
genetic algorithm
Genetic algorithms
Load forecasting
Power system management
Power system reliability
Support vector machine classification
Support vector machines
time series forecasting
title Electric Load Forecasting Using Support Vector Machines Optimized by Genetic Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Electric%20Load%20Forecasting%20Using%20Support%20Vector%20Machines%20Optimized%20by%20Genetic%20Algorithm&rft.btitle=2006%20IEEE%20International%20Multitopic%20Conference&rft.au=Abbas,%20S.R.&rft.date=2006-12&rft.spage=395&rft.epage=399&rft.pages=395-399&rft.isbn=142440794X&rft.isbn_list=9781424407941&rft_id=info:doi/10.1109/INMIC.2006.358199&rft.eisbn=1424407958&rft.eisbn_list=9781424407958&rft_dat=%3Cieee_6IE%3E4196442%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6d2ea4b2a3b4a2c9a1ccada2a6f413441e3cd992b176ca56cee84e96b0e590533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4196442&rfr_iscdi=true