Loading…

Continuous Evaluation of Monochromatic and Bichromatic Reverse Nearest Neighbors

This paper presents a novel algorithm for Incremental and General Evaluation of continuous Reverse Nearest neighbor queries (IGERN, for short). The IGERN algorithm is general as it is applicable for both the monochromatic and bichromatic reverse nearest neighbor queries. The incremental aspect of IG...

Full description

Saved in:
Bibliographic Details
Main Authors: Kang, J. M., Mokbel, M. F., Shekhar, S., Tian Xia, Donghui Zhang
Format: Conference Proceeding
Language:eng ; jpn
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 815
container_issue
container_start_page 806
container_title
container_volume
creator Kang, J. M.
Mokbel, M. F.
Shekhar, S.
Tian Xia
Donghui Zhang
description This paper presents a novel algorithm for Incremental and General Evaluation of continuous Reverse Nearest neighbor queries (IGERN, for short). The IGERN algorithm is general as it is applicable for both the monochromatic and bichromatic reverse nearest neighbor queries. The incremental aspect of IGERN is achieved through determining only a small set of objects to be monitored. While previous algorithms for monochromatic queries rely mainly on monitoring six pie regions, IGERN takes a radical approach by monitoring only a single region around the query object. The IGERN algorithm clearly outperforms the state-of-the-art algorithms in monochromatic queries. In addition, the IGERN algorithm presents the first attempt for continuous evaluation of bichromatic reverse nearest neighbor queries. The computational complexity of IGERN is presented in comparison to the state-of-the-art algorithms in the monochromatic case and to the use of Voronoi diagrams for the bichromatic case. In addition, the correctness of IGERN in both the monochromatic and bichromatic cases are proved. Extensive experimental analysis shows that IGERN is efficient, is scalable, and outperforms previous techniques for continuous reverse nearest neighbor queries.
doi_str_mv 10.1109/ICDE.2007.367926
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4221729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4221729</ieee_id><sourcerecordid>4221729</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-c5e4ea1df2392a54f2a44bac2cd9a28df3ff1d99a96aacf3168fbe3358faa11d3</originalsourceid><addsrcrecordid>eNpVjEtLw0AUhccXWGr2gpv8gcS5904mmaXGqoX6QBTcldtkxo60Gcmkhf57Cwri2Xyc78AR4hxkDiDN5bS-meQoZZmTLg3qA5GYsgKFSslKkjwUI6SyyCTq96N_G9KxGIHUlGmq8FQkMX7KfYwCKORIPNehG3y3CZuYTra82vDgQ5cGlz6ELjTLPqz3pkm5a9Nr_9df7Nb20aaPlnsbhz39x3IR-ngmThyvok1-ORZvt5PX-j6bPd1N66tZ5qHQQ9YUVlmG1iEZ5EI5ZKUW3GDTGsaqdeQctMaw0cyNI9CVW1iionLMAC2NxcXPr7fWzr96v-Z-N1eIUKKhbxEbVkI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Continuous Evaluation of Monochromatic and Bichromatic Reverse Nearest Neighbors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kang, J. M. ; Mokbel, M. F. ; Shekhar, S. ; Tian Xia ; Donghui Zhang</creator><creatorcontrib>Kang, J. M. ; Mokbel, M. F. ; Shekhar, S. ; Tian Xia ; Donghui Zhang</creatorcontrib><description>This paper presents a novel algorithm for Incremental and General Evaluation of continuous Reverse Nearest neighbor queries (IGERN, for short). The IGERN algorithm is general as it is applicable for both the monochromatic and bichromatic reverse nearest neighbor queries. The incremental aspect of IGERN is achieved through determining only a small set of objects to be monitored. While previous algorithms for monochromatic queries rely mainly on monitoring six pie regions, IGERN takes a radical approach by monitoring only a single region around the query object. The IGERN algorithm clearly outperforms the state-of-the-art algorithms in monochromatic queries. In addition, the IGERN algorithm presents the first attempt for continuous evaluation of bichromatic reverse nearest neighbor queries. The computational complexity of IGERN is presented in comparison to the state-of-the-art algorithms in the monochromatic case and to the use of Voronoi diagrams for the bichromatic case. In addition, the correctness of IGERN in both the monochromatic and bichromatic cases are proved. Extensive experimental analysis shows that IGERN is efficient, is scalable, and outperforms previous techniques for continuous reverse nearest neighbor queries.</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 9781424408023</identifier><identifier>ISBN: 1424408024</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 9781424408030</identifier><identifier>EISBN: 1424408032</identifier><identifier>DOI: 10.1109/ICDE.2007.367926</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Computational complexity ; Computer science ; Educational institutions ; Information science ; Monitoring ; Nearest neighbor searches ; Query processing ; Recurrent neural networks ; Strategic planning ; Virtual reality</subject><ispartof>2007 IEEE 23rd International Conference on Data Engineering, 2007, p.806-815</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4221729$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4221729$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, J. M.</creatorcontrib><creatorcontrib>Mokbel, M. F.</creatorcontrib><creatorcontrib>Shekhar, S.</creatorcontrib><creatorcontrib>Tian Xia</creatorcontrib><creatorcontrib>Donghui Zhang</creatorcontrib><title>Continuous Evaluation of Monochromatic and Bichromatic Reverse Nearest Neighbors</title><title>2007 IEEE 23rd International Conference on Data Engineering</title><addtitle>ICDE</addtitle><description>This paper presents a novel algorithm for Incremental and General Evaluation of continuous Reverse Nearest neighbor queries (IGERN, for short). The IGERN algorithm is general as it is applicable for both the monochromatic and bichromatic reverse nearest neighbor queries. The incremental aspect of IGERN is achieved through determining only a small set of objects to be monitored. While previous algorithms for monochromatic queries rely mainly on monitoring six pie regions, IGERN takes a radical approach by monitoring only a single region around the query object. The IGERN algorithm clearly outperforms the state-of-the-art algorithms in monochromatic queries. In addition, the IGERN algorithm presents the first attempt for continuous evaluation of bichromatic reverse nearest neighbor queries. The computational complexity of IGERN is presented in comparison to the state-of-the-art algorithms in the monochromatic case and to the use of Voronoi diagrams for the bichromatic case. In addition, the correctness of IGERN in both the monochromatic and bichromatic cases are proved. Extensive experimental analysis shows that IGERN is efficient, is scalable, and outperforms previous techniques for continuous reverse nearest neighbor queries.</description><subject>Computational complexity</subject><subject>Computer science</subject><subject>Educational institutions</subject><subject>Information science</subject><subject>Monitoring</subject><subject>Nearest neighbor searches</subject><subject>Query processing</subject><subject>Recurrent neural networks</subject><subject>Strategic planning</subject><subject>Virtual reality</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>9781424408023</isbn><isbn>1424408024</isbn><isbn>9781424408030</isbn><isbn>1424408032</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVjEtLw0AUhccXWGr2gpv8gcS5904mmaXGqoX6QBTcldtkxo60Gcmkhf57Cwri2Xyc78AR4hxkDiDN5bS-meQoZZmTLg3qA5GYsgKFSslKkjwUI6SyyCTq96N_G9KxGIHUlGmq8FQkMX7KfYwCKORIPNehG3y3CZuYTra82vDgQ5cGlz6ELjTLPqz3pkm5a9Nr_9df7Nb20aaPlnsbhz39x3IR-ngmThyvok1-ORZvt5PX-j6bPd1N66tZ5qHQQ9YUVlmG1iEZ5EI5ZKUW3GDTGsaqdeQctMaw0cyNI9CVW1iionLMAC2NxcXPr7fWzr96v-Z-N1eIUKKhbxEbVkI</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Kang, J. M.</creator><creator>Mokbel, M. F.</creator><creator>Shekhar, S.</creator><creator>Tian Xia</creator><creator>Donghui Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Continuous Evaluation of Monochromatic and Bichromatic Reverse Nearest Neighbors</title><author>Kang, J. M. ; Mokbel, M. F. ; Shekhar, S. ; Tian Xia ; Donghui Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-c5e4ea1df2392a54f2a44bac2cd9a28df3ff1d99a96aacf3168fbe3358faa11d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Computational complexity</topic><topic>Computer science</topic><topic>Educational institutions</topic><topic>Information science</topic><topic>Monitoring</topic><topic>Nearest neighbor searches</topic><topic>Query processing</topic><topic>Recurrent neural networks</topic><topic>Strategic planning</topic><topic>Virtual reality</topic><toplevel>online_resources</toplevel><creatorcontrib>Kang, J. M.</creatorcontrib><creatorcontrib>Mokbel, M. F.</creatorcontrib><creatorcontrib>Shekhar, S.</creatorcontrib><creatorcontrib>Tian Xia</creatorcontrib><creatorcontrib>Donghui Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, J. M.</au><au>Mokbel, M. F.</au><au>Shekhar, S.</au><au>Tian Xia</au><au>Donghui Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Continuous Evaluation of Monochromatic and Bichromatic Reverse Nearest Neighbors</atitle><btitle>2007 IEEE 23rd International Conference on Data Engineering</btitle><stitle>ICDE</stitle><date>2007-04</date><risdate>2007</risdate><spage>806</spage><epage>815</epage><pages>806-815</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>9781424408023</isbn><isbn>1424408024</isbn><eisbn>9781424408030</eisbn><eisbn>1424408032</eisbn><abstract>This paper presents a novel algorithm for Incremental and General Evaluation of continuous Reverse Nearest neighbor queries (IGERN, for short). The IGERN algorithm is general as it is applicable for both the monochromatic and bichromatic reverse nearest neighbor queries. The incremental aspect of IGERN is achieved through determining only a small set of objects to be monitored. While previous algorithms for monochromatic queries rely mainly on monitoring six pie regions, IGERN takes a radical approach by monitoring only a single region around the query object. The IGERN algorithm clearly outperforms the state-of-the-art algorithms in monochromatic queries. In addition, the IGERN algorithm presents the first attempt for continuous evaluation of bichromatic reverse nearest neighbor queries. The computational complexity of IGERN is presented in comparison to the state-of-the-art algorithms in the monochromatic case and to the use of Voronoi diagrams for the bichromatic case. In addition, the correctness of IGERN in both the monochromatic and bichromatic cases are proved. Extensive experimental analysis shows that IGERN is efficient, is scalable, and outperforms previous techniques for continuous reverse nearest neighbor queries.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2007.367926</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6382
ispartof 2007 IEEE 23rd International Conference on Data Engineering, 2007, p.806-815
issn 1063-6382
2375-026X
language eng ; jpn
recordid cdi_ieee_primary_4221729
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational complexity
Computer science
Educational institutions
Information science
Monitoring
Nearest neighbor searches
Query processing
Recurrent neural networks
Strategic planning
Virtual reality
title Continuous Evaluation of Monochromatic and Bichromatic Reverse Nearest Neighbors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Continuous%20Evaluation%20of%20Monochromatic%20and%20Bichromatic%20Reverse%20Nearest%20Neighbors&rft.btitle=2007%20IEEE%2023rd%20International%20Conference%20on%20Data%20Engineering&rft.au=Kang,%20J.%20M.&rft.date=2007-04&rft.spage=806&rft.epage=815&rft.pages=806-815&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=9781424408023&rft.isbn_list=1424408024&rft_id=info:doi/10.1109/ICDE.2007.367926&rft.eisbn=9781424408030&rft.eisbn_list=1424408032&rft_dat=%3Cieee_6IE%3E4221729%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i156t-c5e4ea1df2392a54f2a44bac2cd9a28df3ff1d99a96aacf3168fbe3358faa11d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4221729&rfr_iscdi=true