Loading…

Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus

The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion throug...

Full description

Saved in:
Bibliographic Details
Main Authors: Lee, S.A., Pinney, J.R., Bergsneider, M., Judy, J.W.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 68
container_issue
container_start_page 65
container_title
container_volume
creator Lee, S.A.
Pinney, J.R.
Bergsneider, M.
Judy, J.W.
description The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion through the use of micromachining and micro-electro-mechanical systems (MEMS) technologies. We designed, fabricated, and tested a second-generation magnetic microactuator. The preliminary results show that the fabricated microactuators can produce the force necessary to break an adherent cellular layer grown over the microactuator surface.
doi_str_mv 10.1109/CNE.2007.369613
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4227218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4227218</ieee_id><sourcerecordid>4227218</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6c108fcabae6ccfc92c062286330eebea82ad948b3c623d4765d8b96489f1c7f3</originalsourceid><addsrcrecordid>eNo9jrlOw0AURYdNIgTXFDT-AYfZPEuJLEOQYkBiaaPn52diZOJoPC7y9yARqE5xjq4uY1eCL4Tg_qZ4LBeSc7tQxhuhjtiF0FJrbr1Ux2wmvHaZynN9whJv3Z8T_PTfaXPOknH85JwrybXwbsaeK_jYUuwwrToMA2CcIA5hTNshpFVZvWTlFuqemvSdtjF0OPUQ0gLihiIdsuW-CQPSbgP9NF6ysxb6kZID5-ztrnwtltnq6f6huF1lnbB5zAwK7lqEGsggtuglciOlM0pxoprASWh-btcKjVSNtiZvXO2Ndr4VaFs1Z9e_ux0RrXeh-4KwX2sprRROfQN261Qd</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus</title><source>IEEE Xplore All Conference Series</source><creator>Lee, S.A. ; Pinney, J.R. ; Bergsneider, M. ; Judy, J.W.</creator><creatorcontrib>Lee, S.A. ; Pinney, J.R. ; Bergsneider, M. ; Judy, J.W.</creatorcontrib><description>The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion through the use of micromachining and micro-electro-mechanical systems (MEMS) technologies. We designed, fabricated, and tested a second-generation magnetic microactuator. The preliminary results show that the fabricated microactuators can produce the force necessary to break an adherent cellular layer grown over the microactuator surface.</description><identifier>ISSN: 1948-3546</identifier><identifier>ISBN: 9781424407910</identifier><identifier>ISBN: 1424407915</identifier><identifier>EISSN: 1948-3554</identifier><identifier>EISBN: 1424407923</identifier><identifier>EISBN: 9781424407927</identifier><identifier>DOI: 10.1109/CNE.2007.369613</identifier><language>eng</language><publisher>IEEE</publisher><subject>Catheters ; hydrocephalus ; magnetic microactuator ; Medical treatment ; MEMS ; Microactuators ; Microelectromechanical systems ; Micromachining ; Micromagnetics ; Micromechanical devices ; Resists ; Surgery ; Testing ; ventricular catheter</subject><ispartof>2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2007, p.65-68</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4227218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4227218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, S.A.</creatorcontrib><creatorcontrib>Pinney, J.R.</creatorcontrib><creatorcontrib>Bergsneider, M.</creatorcontrib><creatorcontrib>Judy, J.W.</creatorcontrib><title>Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus</title><title>2007 3rd International IEEE/EMBS Conference on Neural Engineering</title><addtitle>CNE</addtitle><description>The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion through the use of micromachining and micro-electro-mechanical systems (MEMS) technologies. We designed, fabricated, and tested a second-generation magnetic microactuator. The preliminary results show that the fabricated microactuators can produce the force necessary to break an adherent cellular layer grown over the microactuator surface.</description><subject>Catheters</subject><subject>hydrocephalus</subject><subject>magnetic microactuator</subject><subject>Medical treatment</subject><subject>MEMS</subject><subject>Microactuators</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Micromagnetics</subject><subject>Micromechanical devices</subject><subject>Resists</subject><subject>Surgery</subject><subject>Testing</subject><subject>ventricular catheter</subject><issn>1948-3546</issn><issn>1948-3554</issn><isbn>9781424407910</isbn><isbn>1424407915</isbn><isbn>1424407923</isbn><isbn>9781424407927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jrlOw0AURYdNIgTXFDT-AYfZPEuJLEOQYkBiaaPn52diZOJoPC7y9yARqE5xjq4uY1eCL4Tg_qZ4LBeSc7tQxhuhjtiF0FJrbr1Ux2wmvHaZynN9whJv3Z8T_PTfaXPOknH85JwrybXwbsaeK_jYUuwwrToMA2CcIA5hTNshpFVZvWTlFuqemvSdtjF0OPUQ0gLihiIdsuW-CQPSbgP9NF6ysxb6kZID5-ztrnwtltnq6f6huF1lnbB5zAwK7lqEGsggtuglciOlM0pxoprASWh-btcKjVSNtiZvXO2Ndr4VaFs1Z9e_ux0RrXeh-4KwX2sprRROfQN261Qd</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Lee, S.A.</creator><creator>Pinney, J.R.</creator><creator>Bergsneider, M.</creator><creator>Judy, J.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus</title><author>Lee, S.A. ; Pinney, J.R. ; Bergsneider, M. ; Judy, J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6c108fcabae6ccfc92c062286330eebea82ad948b3c623d4765d8b96489f1c7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Catheters</topic><topic>hydrocephalus</topic><topic>magnetic microactuator</topic><topic>Medical treatment</topic><topic>MEMS</topic><topic>Microactuators</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Micromagnetics</topic><topic>Micromechanical devices</topic><topic>Resists</topic><topic>Surgery</topic><topic>Testing</topic><topic>ventricular catheter</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, S.A.</creatorcontrib><creatorcontrib>Pinney, J.R.</creatorcontrib><creatorcontrib>Bergsneider, M.</creatorcontrib><creatorcontrib>Judy, J.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, S.A.</au><au>Pinney, J.R.</au><au>Bergsneider, M.</au><au>Judy, J.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus</atitle><btitle>2007 3rd International IEEE/EMBS Conference on Neural Engineering</btitle><stitle>CNE</stitle><date>2007-05</date><risdate>2007</risdate><spage>65</spage><epage>68</epage><pages>65-68</pages><issn>1948-3546</issn><eissn>1948-3554</eissn><isbn>9781424407910</isbn><isbn>1424407915</isbn><eisbn>1424407923</eisbn><eisbn>9781424407927</eisbn><abstract>The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion through the use of micromachining and micro-electro-mechanical systems (MEMS) technologies. We designed, fabricated, and tested a second-generation magnetic microactuator. The preliminary results show that the fabricated microactuators can produce the force necessary to break an adherent cellular layer grown over the microactuator surface.</abstract><pub>IEEE</pub><doi>10.1109/CNE.2007.369613</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-3546
ispartof 2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2007, p.65-68
issn 1948-3546
1948-3554
language eng
recordid cdi_ieee_primary_4227218
source IEEE Xplore All Conference Series
subjects Catheters
hydrocephalus
magnetic microactuator
Medical treatment
MEMS
Microactuators
Microelectromechanical systems
Micromachining
Micromagnetics
Micromechanical devices
Resists
Surgery
Testing
ventricular catheter
title Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Magnetic%20Microactuators%20for%20MEMS-Enabled%20Ventricular%20Catheters%20for%20Hydrocephalus&rft.btitle=2007%203rd%20International%20IEEE/EMBS%20Conference%20on%20Neural%20Engineering&rft.au=Lee,%20S.A.&rft.date=2007-05&rft.spage=65&rft.epage=68&rft.pages=65-68&rft.issn=1948-3546&rft.eissn=1948-3554&rft.isbn=9781424407910&rft.isbn_list=1424407915&rft_id=info:doi/10.1109/CNE.2007.369613&rft.eisbn=1424407923&rft.eisbn_list=9781424407927&rft_dat=%3Cieee_CHZPO%3E4227218%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6c108fcabae6ccfc92c062286330eebea82ad948b3c623d4765d8b96489f1c7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4227218&rfr_iscdi=true