Loading…
Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus
The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion throug...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 68 |
container_issue | |
container_start_page | 65 |
container_title | |
container_volume | |
creator | Lee, S.A. Pinney, J.R. Bergsneider, M. Judy, J.W. |
description | The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion through the use of micromachining and micro-electro-mechanical systems (MEMS) technologies. We designed, fabricated, and tested a second-generation magnetic microactuator. The preliminary results show that the fabricated microactuators can produce the force necessary to break an adherent cellular layer grown over the microactuator surface. |
doi_str_mv | 10.1109/CNE.2007.369613 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4227218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4227218</ieee_id><sourcerecordid>4227218</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6c108fcabae6ccfc92c062286330eebea82ad948b3c623d4765d8b96489f1c7f3</originalsourceid><addsrcrecordid>eNo9jrlOw0AURYdNIgTXFDT-AYfZPEuJLEOQYkBiaaPn52diZOJoPC7y9yARqE5xjq4uY1eCL4Tg_qZ4LBeSc7tQxhuhjtiF0FJrbr1Ux2wmvHaZynN9whJv3Z8T_PTfaXPOknH85JwrybXwbsaeK_jYUuwwrToMA2CcIA5hTNshpFVZvWTlFuqemvSdtjF0OPUQ0gLihiIdsuW-CQPSbgP9NF6ysxb6kZID5-ztrnwtltnq6f6huF1lnbB5zAwK7lqEGsggtuglciOlM0pxoprASWh-btcKjVSNtiZvXO2Ndr4VaFs1Z9e_ux0RrXeh-4KwX2sprRROfQN261Qd</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus</title><source>IEEE Xplore All Conference Series</source><creator>Lee, S.A. ; Pinney, J.R. ; Bergsneider, M. ; Judy, J.W.</creator><creatorcontrib>Lee, S.A. ; Pinney, J.R. ; Bergsneider, M. ; Judy, J.W.</creatorcontrib><description>The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion through the use of micromachining and micro-electro-mechanical systems (MEMS) technologies. We designed, fabricated, and tested a second-generation magnetic microactuator. The preliminary results show that the fabricated microactuators can produce the force necessary to break an adherent cellular layer grown over the microactuator surface.</description><identifier>ISSN: 1948-3546</identifier><identifier>ISBN: 9781424407910</identifier><identifier>ISBN: 1424407915</identifier><identifier>EISSN: 1948-3554</identifier><identifier>EISBN: 1424407923</identifier><identifier>EISBN: 9781424407927</identifier><identifier>DOI: 10.1109/CNE.2007.369613</identifier><language>eng</language><publisher>IEEE</publisher><subject>Catheters ; hydrocephalus ; magnetic microactuator ; Medical treatment ; MEMS ; Microactuators ; Microelectromechanical systems ; Micromachining ; Micromagnetics ; Micromechanical devices ; Resists ; Surgery ; Testing ; ventricular catheter</subject><ispartof>2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2007, p.65-68</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4227218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4227218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, S.A.</creatorcontrib><creatorcontrib>Pinney, J.R.</creatorcontrib><creatorcontrib>Bergsneider, M.</creatorcontrib><creatorcontrib>Judy, J.W.</creatorcontrib><title>Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus</title><title>2007 3rd International IEEE/EMBS Conference on Neural Engineering</title><addtitle>CNE</addtitle><description>The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion through the use of micromachining and micro-electro-mechanical systems (MEMS) technologies. We designed, fabricated, and tested a second-generation magnetic microactuator. The preliminary results show that the fabricated microactuators can produce the force necessary to break an adherent cellular layer grown over the microactuator surface.</description><subject>Catheters</subject><subject>hydrocephalus</subject><subject>magnetic microactuator</subject><subject>Medical treatment</subject><subject>MEMS</subject><subject>Microactuators</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Micromagnetics</subject><subject>Micromechanical devices</subject><subject>Resists</subject><subject>Surgery</subject><subject>Testing</subject><subject>ventricular catheter</subject><issn>1948-3546</issn><issn>1948-3554</issn><isbn>9781424407910</isbn><isbn>1424407915</isbn><isbn>1424407923</isbn><isbn>9781424407927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jrlOw0AURYdNIgTXFDT-AYfZPEuJLEOQYkBiaaPn52diZOJoPC7y9yARqE5xjq4uY1eCL4Tg_qZ4LBeSc7tQxhuhjtiF0FJrbr1Ux2wmvHaZynN9whJv3Z8T_PTfaXPOknH85JwrybXwbsaeK_jYUuwwrToMA2CcIA5hTNshpFVZvWTlFuqemvSdtjF0OPUQ0gLihiIdsuW-CQPSbgP9NF6ysxb6kZID5-ztrnwtltnq6f6huF1lnbB5zAwK7lqEGsggtuglciOlM0pxoprASWh-btcKjVSNtiZvXO2Ndr4VaFs1Z9e_ux0RrXeh-4KwX2sprRROfQN261Qd</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Lee, S.A.</creator><creator>Pinney, J.R.</creator><creator>Bergsneider, M.</creator><creator>Judy, J.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus</title><author>Lee, S.A. ; Pinney, J.R. ; Bergsneider, M. ; Judy, J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6c108fcabae6ccfc92c062286330eebea82ad948b3c623d4765d8b96489f1c7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Catheters</topic><topic>hydrocephalus</topic><topic>magnetic microactuator</topic><topic>Medical treatment</topic><topic>MEMS</topic><topic>Microactuators</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Micromagnetics</topic><topic>Micromechanical devices</topic><topic>Resists</topic><topic>Surgery</topic><topic>Testing</topic><topic>ventricular catheter</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, S.A.</creatorcontrib><creatorcontrib>Pinney, J.R.</creatorcontrib><creatorcontrib>Bergsneider, M.</creatorcontrib><creatorcontrib>Judy, J.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, S.A.</au><au>Pinney, J.R.</au><au>Bergsneider, M.</au><au>Judy, J.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus</atitle><btitle>2007 3rd International IEEE/EMBS Conference on Neural Engineering</btitle><stitle>CNE</stitle><date>2007-05</date><risdate>2007</risdate><spage>65</spage><epage>68</epage><pages>65-68</pages><issn>1948-3546</issn><eissn>1948-3554</eissn><isbn>9781424407910</isbn><isbn>1424407915</isbn><eisbn>1424407923</eisbn><eisbn>9781424407927</eisbn><abstract>The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal-fluid (CSF) shunt. A leading cause of shunt failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion through the use of micromachining and micro-electro-mechanical systems (MEMS) technologies. We designed, fabricated, and tested a second-generation magnetic microactuator. The preliminary results show that the fabricated microactuators can produce the force necessary to break an adherent cellular layer grown over the microactuator surface.</abstract><pub>IEEE</pub><doi>10.1109/CNE.2007.369613</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-3546 |
ispartof | 2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2007, p.65-68 |
issn | 1948-3546 1948-3554 |
language | eng |
recordid | cdi_ieee_primary_4227218 |
source | IEEE Xplore All Conference Series |
subjects | Catheters hydrocephalus magnetic microactuator Medical treatment MEMS Microactuators Microelectromechanical systems Micromachining Micromagnetics Micromechanical devices Resists Surgery Testing ventricular catheter |
title | Magnetic Microactuators for MEMS-Enabled Ventricular Catheters for Hydrocephalus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Magnetic%20Microactuators%20for%20MEMS-Enabled%20Ventricular%20Catheters%20for%20Hydrocephalus&rft.btitle=2007%203rd%20International%20IEEE/EMBS%20Conference%20on%20Neural%20Engineering&rft.au=Lee,%20S.A.&rft.date=2007-05&rft.spage=65&rft.epage=68&rft.pages=65-68&rft.issn=1948-3546&rft.eissn=1948-3554&rft.isbn=9781424407910&rft.isbn_list=1424407915&rft_id=info:doi/10.1109/CNE.2007.369613&rft.eisbn=1424407923&rft.eisbn_list=9781424407927&rft_dat=%3Cieee_CHZPO%3E4227218%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6c108fcabae6ccfc92c062286330eebea82ad948b3c623d4765d8b96489f1c7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4227218&rfr_iscdi=true |