Loading…
An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter
This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 397 |
container_issue | |
container_start_page | 394 |
container_title | |
container_volume | |
creator | Jawhar S, J. Marimuthu, N.S. Singh N, A. |
description | This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional PI controllers for such converters designed under the worst case condition of maximum load and minimum line condition present a lower loop band width, and the system response also sluggish. The common bottleneck in fuzzy logic is the derivation of fuzzy rules and the parameter tuning for the controller. The neural networks have powerful learning abilities, optimization abilities and adaptation. The fuzzy logic and neural networks can be integrated to form a connectionist adaptive network based fuzzy logic controller. This integrated adaptive system modifies the characteristics of rules and the structure of the control system. This paper aims to establish the superior performance of neuro-fuzzy controller over the conventional PI controllers and fuzzy controllers at various operating points of the boost converter. |
doi_str_mv | 10.1109/ICINFA.2006.374124 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4250214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4250214</ieee_id><sourcerecordid>4250214</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5aea039e19179ed67f7767bf3c8e151824559d02c3d3ebd6c53c4915f4ee77ed3</originalsourceid><addsrcrecordid>eNo9TslOwzAUNJtEKfkBuPgHEvy8xPaxRA1ERIFD75WbvEhBIUZOCmq_niCWuYw0y3tDyA2wBIDZuyIrqnyVcMbSRGgJXJ6QyGoDkkvJlFLmlCw4KIjBADsjV3-GNOf_BuOXJBrHVzZD2BS0WZCn1UAr3Acf5_vj8UAzP0zB9z0G2vpAHa38QMtuQBfoi_-c5XWP9RwZupreez9O35UPDBOGa3LRun7E6JeXZJOvN9ljXD4_FNmqjDvLplg5dPN7BAvaYpPqVutU71pRG5x3Gi6Vsg3jtWgE7pq0VqKWFlQrEbXGRizJ7c_ZDhG376F7c-GwlVwxDlJ8AXmbUYc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter</title><source>IEEE Xplore All Conference Series</source><creator>Jawhar S, J. ; Marimuthu, N.S. ; Singh N, A.</creator><creatorcontrib>Jawhar S, J. ; Marimuthu, N.S. ; Singh N, A.</creatorcontrib><description>This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional PI controllers for such converters designed under the worst case condition of maximum load and minimum line condition present a lower loop band width, and the system response also sluggish. The common bottleneck in fuzzy logic is the derivation of fuzzy rules and the parameter tuning for the controller. The neural networks have powerful learning abilities, optimization abilities and adaptation. The fuzzy logic and neural networks can be integrated to form a connectionist adaptive network based fuzzy logic controller. This integrated adaptive system modifies the characteristics of rules and the structure of the control system. This paper aims to establish the superior performance of neuro-fuzzy controller over the conventional PI controllers and fuzzy controllers at various operating points of the boost converter.</description><identifier>ISSN: 2151-1802</identifier><identifier>ISBN: 1424405548</identifier><identifier>ISBN: 9781424405541</identifier><identifier>EISSN: 2151-1810</identifier><identifier>EISBN: 9781424405558</identifier><identifier>EISBN: 1424405556</identifier><identifier>DOI: 10.1109/ICINFA.2006.374124</identifier><language>eng</language><publisher>IEEE</publisher><subject>ANFIS ; ANN ; Artificial intelligence ; Control systems ; DC-DC converter ; DC-DC power converters ; Educational institutions ; FLC ; Fuzzy control ; Fuzzy logic ; Neural networks ; Power electronics ; Power engineering and energy ; Power system modeling</subject><ispartof>2006 International Conference on Information and Automation, 2006, p.394-397</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4250214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4250214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jawhar S, J.</creatorcontrib><creatorcontrib>Marimuthu, N.S.</creatorcontrib><creatorcontrib>Singh N, A.</creatorcontrib><title>An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter</title><title>2006 International Conference on Information and Automation</title><addtitle>ICINFA</addtitle><description>This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional PI controllers for such converters designed under the worst case condition of maximum load and minimum line condition present a lower loop band width, and the system response also sluggish. The common bottleneck in fuzzy logic is the derivation of fuzzy rules and the parameter tuning for the controller. The neural networks have powerful learning abilities, optimization abilities and adaptation. The fuzzy logic and neural networks can be integrated to form a connectionist adaptive network based fuzzy logic controller. This integrated adaptive system modifies the characteristics of rules and the structure of the control system. This paper aims to establish the superior performance of neuro-fuzzy controller over the conventional PI controllers and fuzzy controllers at various operating points of the boost converter.</description><subject>ANFIS</subject><subject>ANN</subject><subject>Artificial intelligence</subject><subject>Control systems</subject><subject>DC-DC converter</subject><subject>DC-DC power converters</subject><subject>Educational institutions</subject><subject>FLC</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Neural networks</subject><subject>Power electronics</subject><subject>Power engineering and energy</subject><subject>Power system modeling</subject><issn>2151-1802</issn><issn>2151-1810</issn><isbn>1424405548</isbn><isbn>9781424405541</isbn><isbn>9781424405558</isbn><isbn>1424405556</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9TslOwzAUNJtEKfkBuPgHEvy8xPaxRA1ERIFD75WbvEhBIUZOCmq_niCWuYw0y3tDyA2wBIDZuyIrqnyVcMbSRGgJXJ6QyGoDkkvJlFLmlCw4KIjBADsjV3-GNOf_BuOXJBrHVzZD2BS0WZCn1UAr3Acf5_vj8UAzP0zB9z0G2vpAHa38QMtuQBfoi_-c5XWP9RwZupreez9O35UPDBOGa3LRun7E6JeXZJOvN9ljXD4_FNmqjDvLplg5dPN7BAvaYpPqVutU71pRG5x3Gi6Vsg3jtWgE7pq0VqKWFlQrEbXGRizJ7c_ZDhG376F7c-GwlVwxDlJ8AXmbUYc</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Jawhar S, J.</creator><creator>Marimuthu, N.S.</creator><creator>Singh N, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter</title><author>Jawhar S, J. ; Marimuthu, N.S. ; Singh N, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5aea039e19179ed67f7767bf3c8e151824559d02c3d3ebd6c53c4915f4ee77ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ANFIS</topic><topic>ANN</topic><topic>Artificial intelligence</topic><topic>Control systems</topic><topic>DC-DC converter</topic><topic>DC-DC power converters</topic><topic>Educational institutions</topic><topic>FLC</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Neural networks</topic><topic>Power electronics</topic><topic>Power engineering and energy</topic><topic>Power system modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Jawhar S, J.</creatorcontrib><creatorcontrib>Marimuthu, N.S.</creatorcontrib><creatorcontrib>Singh N, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jawhar S, J.</au><au>Marimuthu, N.S.</au><au>Singh N, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter</atitle><btitle>2006 International Conference on Information and Automation</btitle><stitle>ICINFA</stitle><date>2006-12</date><risdate>2006</risdate><spage>394</spage><epage>397</epage><pages>394-397</pages><issn>2151-1802</issn><eissn>2151-1810</eissn><isbn>1424405548</isbn><isbn>9781424405541</isbn><eisbn>9781424405558</eisbn><eisbn>1424405556</eisbn><abstract>This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional PI controllers for such converters designed under the worst case condition of maximum load and minimum line condition present a lower loop band width, and the system response also sluggish. The common bottleneck in fuzzy logic is the derivation of fuzzy rules and the parameter tuning for the controller. The neural networks have powerful learning abilities, optimization abilities and adaptation. The fuzzy logic and neural networks can be integrated to form a connectionist adaptive network based fuzzy logic controller. This integrated adaptive system modifies the characteristics of rules and the structure of the control system. This paper aims to establish the superior performance of neuro-fuzzy controller over the conventional PI controllers and fuzzy controllers at various operating points of the boost converter.</abstract><pub>IEEE</pub><doi>10.1109/ICINFA.2006.374124</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2151-1802 |
ispartof | 2006 International Conference on Information and Automation, 2006, p.394-397 |
issn | 2151-1802 2151-1810 |
language | eng |
recordid | cdi_ieee_primary_4250214 |
source | IEEE Xplore All Conference Series |
subjects | ANFIS ANN Artificial intelligence Control systems DC-DC converter DC-DC power converters Educational institutions FLC Fuzzy control Fuzzy logic Neural networks Power electronics Power engineering and energy Power system modeling |
title | An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Neuro-Fuzzy%20Controller%20for%20a%20Non%20Linear%20Power%20Electronic%20Boost%20Converter&rft.btitle=2006%20International%20Conference%20on%20Information%20and%20Automation&rft.au=Jawhar%20S,%20J.&rft.date=2006-12&rft.spage=394&rft.epage=397&rft.pages=394-397&rft.issn=2151-1802&rft.eissn=2151-1810&rft.isbn=1424405548&rft.isbn_list=9781424405541&rft_id=info:doi/10.1109/ICINFA.2006.374124&rft.eisbn=9781424405558&rft.eisbn_list=1424405556&rft_dat=%3Cieee_CHZPO%3E4250214%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-5aea039e19179ed67f7767bf3c8e151824559d02c3d3ebd6c53c4915f4ee77ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4250214&rfr_iscdi=true |