Loading…

An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter

This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional...

Full description

Saved in:
Bibliographic Details
Main Authors: Jawhar S, J., Marimuthu, N.S., Singh N, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 397
container_issue
container_start_page 394
container_title
container_volume
creator Jawhar S, J.
Marimuthu, N.S.
Singh N, A.
description This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional PI controllers for such converters designed under the worst case condition of maximum load and minimum line condition present a lower loop band width, and the system response also sluggish. The common bottleneck in fuzzy logic is the derivation of fuzzy rules and the parameter tuning for the controller. The neural networks have powerful learning abilities, optimization abilities and adaptation. The fuzzy logic and neural networks can be integrated to form a connectionist adaptive network based fuzzy logic controller. This integrated adaptive system modifies the characteristics of rules and the structure of the control system. This paper aims to establish the superior performance of neuro-fuzzy controller over the conventional PI controllers and fuzzy controllers at various operating points of the boost converter.
doi_str_mv 10.1109/ICINFA.2006.374124
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4250214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4250214</ieee_id><sourcerecordid>4250214</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5aea039e19179ed67f7767bf3c8e151824559d02c3d3ebd6c53c4915f4ee77ed3</originalsourceid><addsrcrecordid>eNo9TslOwzAUNJtEKfkBuPgHEvy8xPaxRA1ERIFD75WbvEhBIUZOCmq_niCWuYw0y3tDyA2wBIDZuyIrqnyVcMbSRGgJXJ6QyGoDkkvJlFLmlCw4KIjBADsjV3-GNOf_BuOXJBrHVzZD2BS0WZCn1UAr3Acf5_vj8UAzP0zB9z0G2vpAHa38QMtuQBfoi_-c5XWP9RwZupreez9O35UPDBOGa3LRun7E6JeXZJOvN9ljXD4_FNmqjDvLplg5dPN7BAvaYpPqVutU71pRG5x3Gi6Vsg3jtWgE7pq0VqKWFlQrEbXGRizJ7c_ZDhG376F7c-GwlVwxDlJ8AXmbUYc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter</title><source>IEEE Xplore All Conference Series</source><creator>Jawhar S, J. ; Marimuthu, N.S. ; Singh N, A.</creator><creatorcontrib>Jawhar S, J. ; Marimuthu, N.S. ; Singh N, A.</creatorcontrib><description>This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional PI controllers for such converters designed under the worst case condition of maximum load and minimum line condition present a lower loop band width, and the system response also sluggish. The common bottleneck in fuzzy logic is the derivation of fuzzy rules and the parameter tuning for the controller. The neural networks have powerful learning abilities, optimization abilities and adaptation. The fuzzy logic and neural networks can be integrated to form a connectionist adaptive network based fuzzy logic controller. This integrated adaptive system modifies the characteristics of rules and the structure of the control system. This paper aims to establish the superior performance of neuro-fuzzy controller over the conventional PI controllers and fuzzy controllers at various operating points of the boost converter.</description><identifier>ISSN: 2151-1802</identifier><identifier>ISBN: 1424405548</identifier><identifier>ISBN: 9781424405541</identifier><identifier>EISSN: 2151-1810</identifier><identifier>EISBN: 9781424405558</identifier><identifier>EISBN: 1424405556</identifier><identifier>DOI: 10.1109/ICINFA.2006.374124</identifier><language>eng</language><publisher>IEEE</publisher><subject>ANFIS ; ANN ; Artificial intelligence ; Control systems ; DC-DC converter ; DC-DC power converters ; Educational institutions ; FLC ; Fuzzy control ; Fuzzy logic ; Neural networks ; Power electronics ; Power engineering and energy ; Power system modeling</subject><ispartof>2006 International Conference on Information and Automation, 2006, p.394-397</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4250214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4250214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jawhar S, J.</creatorcontrib><creatorcontrib>Marimuthu, N.S.</creatorcontrib><creatorcontrib>Singh N, A.</creatorcontrib><title>An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter</title><title>2006 International Conference on Information and Automation</title><addtitle>ICINFA</addtitle><description>This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional PI controllers for such converters designed under the worst case condition of maximum load and minimum line condition present a lower loop band width, and the system response also sluggish. The common bottleneck in fuzzy logic is the derivation of fuzzy rules and the parameter tuning for the controller. The neural networks have powerful learning abilities, optimization abilities and adaptation. The fuzzy logic and neural networks can be integrated to form a connectionist adaptive network based fuzzy logic controller. This integrated adaptive system modifies the characteristics of rules and the structure of the control system. This paper aims to establish the superior performance of neuro-fuzzy controller over the conventional PI controllers and fuzzy controllers at various operating points of the boost converter.</description><subject>ANFIS</subject><subject>ANN</subject><subject>Artificial intelligence</subject><subject>Control systems</subject><subject>DC-DC converter</subject><subject>DC-DC power converters</subject><subject>Educational institutions</subject><subject>FLC</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Neural networks</subject><subject>Power electronics</subject><subject>Power engineering and energy</subject><subject>Power system modeling</subject><issn>2151-1802</issn><issn>2151-1810</issn><isbn>1424405548</isbn><isbn>9781424405541</isbn><isbn>9781424405558</isbn><isbn>1424405556</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9TslOwzAUNJtEKfkBuPgHEvy8xPaxRA1ERIFD75WbvEhBIUZOCmq_niCWuYw0y3tDyA2wBIDZuyIrqnyVcMbSRGgJXJ6QyGoDkkvJlFLmlCw4KIjBADsjV3-GNOf_BuOXJBrHVzZD2BS0WZCn1UAr3Acf5_vj8UAzP0zB9z0G2vpAHa38QMtuQBfoi_-c5XWP9RwZupreez9O35UPDBOGa3LRun7E6JeXZJOvN9ljXD4_FNmqjDvLplg5dPN7BAvaYpPqVutU71pRG5x3Gi6Vsg3jtWgE7pq0VqKWFlQrEbXGRizJ7c_ZDhG376F7c-GwlVwxDlJ8AXmbUYc</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Jawhar S, J.</creator><creator>Marimuthu, N.S.</creator><creator>Singh N, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter</title><author>Jawhar S, J. ; Marimuthu, N.S. ; Singh N, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5aea039e19179ed67f7767bf3c8e151824559d02c3d3ebd6c53c4915f4ee77ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ANFIS</topic><topic>ANN</topic><topic>Artificial intelligence</topic><topic>Control systems</topic><topic>DC-DC converter</topic><topic>DC-DC power converters</topic><topic>Educational institutions</topic><topic>FLC</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Neural networks</topic><topic>Power electronics</topic><topic>Power engineering and energy</topic><topic>Power system modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Jawhar S, J.</creatorcontrib><creatorcontrib>Marimuthu, N.S.</creatorcontrib><creatorcontrib>Singh N, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jawhar S, J.</au><au>Marimuthu, N.S.</au><au>Singh N, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter</atitle><btitle>2006 International Conference on Information and Automation</btitle><stitle>ICINFA</stitle><date>2006-12</date><risdate>2006</risdate><spage>394</spage><epage>397</epage><pages>394-397</pages><issn>2151-1802</issn><eissn>2151-1810</eissn><isbn>1424405548</isbn><isbn>9781424405541</isbn><eisbn>9781424405558</eisbn><eisbn>1424405556</eisbn><abstract>This paper describes the design and development of a novel controller for a non-linear power electronic converter. The neuro-fuzzy controller is proposed to improve the performance of the boost converter. The duty cycle of the boost converter is controlled by neuro-fuzzy controller. The conventional PI controllers for such converters designed under the worst case condition of maximum load and minimum line condition present a lower loop band width, and the system response also sluggish. The common bottleneck in fuzzy logic is the derivation of fuzzy rules and the parameter tuning for the controller. The neural networks have powerful learning abilities, optimization abilities and adaptation. The fuzzy logic and neural networks can be integrated to form a connectionist adaptive network based fuzzy logic controller. This integrated adaptive system modifies the characteristics of rules and the structure of the control system. This paper aims to establish the superior performance of neuro-fuzzy controller over the conventional PI controllers and fuzzy controllers at various operating points of the boost converter.</abstract><pub>IEEE</pub><doi>10.1109/ICINFA.2006.374124</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-1802
ispartof 2006 International Conference on Information and Automation, 2006, p.394-397
issn 2151-1802
2151-1810
language eng
recordid cdi_ieee_primary_4250214
source IEEE Xplore All Conference Series
subjects ANFIS
ANN
Artificial intelligence
Control systems
DC-DC converter
DC-DC power converters
Educational institutions
FLC
Fuzzy control
Fuzzy logic
Neural networks
Power electronics
Power engineering and energy
Power system modeling
title An Neuro-Fuzzy Controller for a Non Linear Power Electronic Boost Converter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Neuro-Fuzzy%20Controller%20for%20a%20Non%20Linear%20Power%20Electronic%20Boost%20Converter&rft.btitle=2006%20International%20Conference%20on%20Information%20and%20Automation&rft.au=Jawhar%20S,%20J.&rft.date=2006-12&rft.spage=394&rft.epage=397&rft.pages=394-397&rft.issn=2151-1802&rft.eissn=2151-1810&rft.isbn=1424405548&rft.isbn_list=9781424405541&rft_id=info:doi/10.1109/ICINFA.2006.374124&rft.eisbn=9781424405558&rft.eisbn_list=1424405556&rft_dat=%3Cieee_CHZPO%3E4250214%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-5aea039e19179ed67f7767bf3c8e151824559d02c3d3ebd6c53c4915f4ee77ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4250214&rfr_iscdi=true