Loading…
A comparison Study of Cepstral Analysis with Applications to Speech Recognition
Three cepstral parametric methods were compared for speech recognition application: Real Cepstrum, Mel-Frequency Cepstrum and a new method Maximum Likelihood Cepstrum. The cepstral parameters were extracted from training and testing sets that, consisted of part of the TI-DIGIT database. The paramete...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 33 |
container_issue | |
container_start_page | 30 |
container_title | |
container_volume | |
creator | Zigelboim, G. Shallom, I.D. |
description | Three cepstral parametric methods were compared for speech recognition application: Real Cepstrum, Mel-Frequency Cepstrum and a new method Maximum Likelihood Cepstrum. The cepstral parameters were extracted from training and testing sets that, consisted of part of the TI-DIGIT database. The parameter extraction (both stationary and dynamics) was performed by the HTK engine and Matlab scripts. Training and recognition were performed by HTK, using continues density HMMs. Simulations with additive noise were performed and their results compared. The maximum-likelihood cepstrum with dynamics has proved to be superior to the real cepstrum and significantly improved the recognition rate to be almost as high as of the Mel-frequency cepstrum. |
doi_str_mv | 10.1109/ITRE.2006.381527 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4266288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4266288</ieee_id><sourcerecordid>4266288</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-78915459ca4927e0649569c495f14670c03690790490feb464fb75aec52bd0163</originalsourceid><addsrcrecordid>eNo1jF1LwzAYhSMiqLP3gjf5A51v0nxeljJ1MBhsE7wbaZa6SNeEJiL9907Uc3EeznNxELonMCcE9ONyt1nMKYCYV4pwKi9QoaUijDIGimt5iW7_h3q7RkVKH3BOpTmR7Aata2zDKZrRpzDgbf48TDh0uHEx5dH0uB5MPyWf8JfPR1zH2Htrsg9DwjngbXTOHvHG2fA--B99h6460ydX_HGGXp8Wu-alXK2fl029Kj2RPJdSacIZ19YwTaUDwTQX2p67I0xIsFAJDVID09C5lgnWtZIbZzltD0BENUMPv7_eObePoz-ZcdozKgRVqvoGic9OhQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A comparison Study of Cepstral Analysis with Applications to Speech Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zigelboim, G. ; Shallom, I.D.</creator><creatorcontrib>Zigelboim, G. ; Shallom, I.D.</creatorcontrib><description>Three cepstral parametric methods were compared for speech recognition application: Real Cepstrum, Mel-Frequency Cepstrum and a new method Maximum Likelihood Cepstrum. The cepstral parameters were extracted from training and testing sets that, consisted of part of the TI-DIGIT database. The parameter extraction (both stationary and dynamics) was performed by the HTK engine and Matlab scripts. Training and recognition were performed by HTK, using continues density HMMs. Simulations with additive noise were performed and their results compared. The maximum-likelihood cepstrum with dynamics has proved to be superior to the real cepstrum and significantly improved the recognition rate to be almost as high as of the Mel-frequency cepstrum.</description><identifier>ISBN: 142440858X</identifier><identifier>ISBN: 9781424408580</identifier><identifier>EISBN: 9781424408597</identifier><identifier>EISBN: 1424408598</identifier><identifier>DOI: 10.1109/ITRE.2006.381527</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive noise ; Cepstral analysis ; Cepstrum ; Engines ; Hidden Markov models ; Mel frequency cepstral coefficient ; Parameter extraction ; Speech recognition ; Testing</subject><ispartof>2006 International Conference on Information Technology: Research and Education, 2006, p.30-33</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4266288$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4266288$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zigelboim, G.</creatorcontrib><creatorcontrib>Shallom, I.D.</creatorcontrib><title>A comparison Study of Cepstral Analysis with Applications to Speech Recognition</title><title>2006 International Conference on Information Technology: Research and Education</title><addtitle>ITRE</addtitle><description>Three cepstral parametric methods were compared for speech recognition application: Real Cepstrum, Mel-Frequency Cepstrum and a new method Maximum Likelihood Cepstrum. The cepstral parameters were extracted from training and testing sets that, consisted of part of the TI-DIGIT database. The parameter extraction (both stationary and dynamics) was performed by the HTK engine and Matlab scripts. Training and recognition were performed by HTK, using continues density HMMs. Simulations with additive noise were performed and their results compared. The maximum-likelihood cepstrum with dynamics has proved to be superior to the real cepstrum and significantly improved the recognition rate to be almost as high as of the Mel-frequency cepstrum.</description><subject>Additive noise</subject><subject>Cepstral analysis</subject><subject>Cepstrum</subject><subject>Engines</subject><subject>Hidden Markov models</subject><subject>Mel frequency cepstral coefficient</subject><subject>Parameter extraction</subject><subject>Speech recognition</subject><subject>Testing</subject><isbn>142440858X</isbn><isbn>9781424408580</isbn><isbn>9781424408597</isbn><isbn>1424408598</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jF1LwzAYhSMiqLP3gjf5A51v0nxeljJ1MBhsE7wbaZa6SNeEJiL9907Uc3EeznNxELonMCcE9ONyt1nMKYCYV4pwKi9QoaUijDIGimt5iW7_h3q7RkVKH3BOpTmR7Aata2zDKZrRpzDgbf48TDh0uHEx5dH0uB5MPyWf8JfPR1zH2Htrsg9DwjngbXTOHvHG2fA--B99h6460ydX_HGGXp8Wu-alXK2fl029Kj2RPJdSacIZ19YwTaUDwTQX2p67I0xIsFAJDVID09C5lgnWtZIbZzltD0BENUMPv7_eObePoz-ZcdozKgRVqvoGic9OhQ</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Zigelboim, G.</creator><creator>Shallom, I.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>A comparison Study of Cepstral Analysis with Applications to Speech Recognition</title><author>Zigelboim, G. ; Shallom, I.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-78915459ca4927e0649569c495f14670c03690790490feb464fb75aec52bd0163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Additive noise</topic><topic>Cepstral analysis</topic><topic>Cepstrum</topic><topic>Engines</topic><topic>Hidden Markov models</topic><topic>Mel frequency cepstral coefficient</topic><topic>Parameter extraction</topic><topic>Speech recognition</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zigelboim, G.</creatorcontrib><creatorcontrib>Shallom, I.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zigelboim, G.</au><au>Shallom, I.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comparison Study of Cepstral Analysis with Applications to Speech Recognition</atitle><btitle>2006 International Conference on Information Technology: Research and Education</btitle><stitle>ITRE</stitle><date>2006-10</date><risdate>2006</risdate><spage>30</spage><epage>33</epage><pages>30-33</pages><isbn>142440858X</isbn><isbn>9781424408580</isbn><eisbn>9781424408597</eisbn><eisbn>1424408598</eisbn><abstract>Three cepstral parametric methods were compared for speech recognition application: Real Cepstrum, Mel-Frequency Cepstrum and a new method Maximum Likelihood Cepstrum. The cepstral parameters were extracted from training and testing sets that, consisted of part of the TI-DIGIT database. The parameter extraction (both stationary and dynamics) was performed by the HTK engine and Matlab scripts. Training and recognition were performed by HTK, using continues density HMMs. Simulations with additive noise were performed and their results compared. The maximum-likelihood cepstrum with dynamics has proved to be superior to the real cepstrum and significantly improved the recognition rate to be almost as high as of the Mel-frequency cepstrum.</abstract><pub>IEEE</pub><doi>10.1109/ITRE.2006.381527</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 142440858X |
ispartof | 2006 International Conference on Information Technology: Research and Education, 2006, p.30-33 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4266288 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Additive noise Cepstral analysis Cepstrum Engines Hidden Markov models Mel frequency cepstral coefficient Parameter extraction Speech recognition Testing |
title | A comparison Study of Cepstral Analysis with Applications to Speech Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comparison%20Study%20of%20Cepstral%20Analysis%20with%20Applications%20to%20Speech%20Recognition&rft.btitle=2006%20International%20Conference%20on%20Information%20Technology:%20Research%20and%20Education&rft.au=Zigelboim,%20G.&rft.date=2006-10&rft.spage=30&rft.epage=33&rft.pages=30-33&rft.isbn=142440858X&rft.isbn_list=9781424408580&rft_id=info:doi/10.1109/ITRE.2006.381527&rft.eisbn=9781424408597&rft.eisbn_list=1424408598&rft_dat=%3Cieee_6IE%3E4266288%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-78915459ca4927e0649569c495f14670c03690790490feb464fb75aec52bd0163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4266288&rfr_iscdi=true |