Loading…

Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters

In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2007-07, Vol.54 (7), p.1599-1611
Main Authors: Pei, Soo-Chang, Ding, Jian-Jiun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3
cites cdi_FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3
container_end_page 1611
container_issue 7
container_start_page 1599
container_title IEEE transactions on circuits and systems. 1, Fundamental theory and applications
container_volume 54
creator Pei, Soo-Chang
Ding, Jian-Jiun
description In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We extend the previous works to the cases of complex parameters and complex offsets. We first derive the eigenvectors of the offset discrete FT. They approximate the samples of the eigenfunctions of the continuous offset FT. We find that the eigenfunctions of the offset FT with complex offsets are the smoothed Hermite-Gaussian functions with shifting and modulation. Then we extend the results for the case of the offset FRFT and the offset LCT. We can use the derived eigenfunctions to simulate the self-imaging phenomenon for the optical system with energy-absorbing component, mode selection, encryption, and define the fractional Z-transform and the fractional Laplace transform.
doi_str_mv 10.1109/TCSI.2007.900182
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_ieee_primary_4268417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4268417</ieee_id><sourcerecordid>896211400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3</originalsourceid><addsrcrecordid>eNp9kb1PwzAQxS0EEqWwI7FEDDClnD_i2COKWqiEVCSKGC3XsSFVPoqdSPDfkzSoAwPTne5-7w3vIXSJYYYxyLt19rKcEYB0JgGwIEdogpNExCCAHw87k7GgRJyisxC2AEQCxROk5sW7rV1Xm7Zo6hA1Llo0nS-sj3SdRwuv9w9dHs5rr-vgGl-F6K1oP6KsqXal_YpWzgXbhr3sWXtd2db6cI5OnC6DvfidU_S6mK-zx_hp9bDM7p9iQ2XSxizhODeQ5sQY56TjIETOEkqZZkYTBhynmpNcs1QzspHcSpoz0JA6Ik26oVN0O_rufPPZ2dCqqgjGlqWubdMFJSQnGDOAnrz5l6QsAWAp6cHrP-C2j6CPonfjTPIe4T0EI2R8E4K3Tu18UWn_rTCooRg1FKOGYtRYTC-5GiWFtfaAM8IFwyn9Ad-UiUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864967236</pqid></control><display><type>article</type><title>Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters</title><source>IEEE Xplore (Online service)</source><creator>Pei, Soo-Chang ; Ding, Jian-Jiun</creator><creatorcontrib>Pei, Soo-Chang ; Ding, Jian-Jiun</creatorcontrib><description>In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We extend the previous works to the cases of complex parameters and complex offsets. We first derive the eigenvectors of the offset discrete FT. They approximate the samples of the eigenfunctions of the continuous offset FT. We find that the eigenfunctions of the offset FT with complex offsets are the smoothed Hermite-Gaussian functions with shifting and modulation. Then we extend the results for the case of the offset FRFT and the offset LCT. We can use the derived eigenfunctions to simulate the self-imaging phenomenon for the optical system with energy-absorbing component, mode selection, encryption, and define the fractional Z-transform and the fractional Laplace transform.</description><identifier>ISSN: 1549-8328</identifier><identifier>ISSN: 1057-7122</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2007.900182</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Circuits ; Councils ; Cryptography ; Discrete Fourier transforms ; Discrete transforms ; Eigenfunctions ; Eigenvalue ; Eigenvalues and eigenfunctions ; eigenvector ; Fourier analysis ; Fourier transforms ; fractional Fourier transform (FRFT) ; fractional Laplace transform ; fractional Z -transform ; Karhunen-Loeve transforms ; Laplace equations ; Laplace transforms ; linear canonical transform (LCT) ; Modulation ; offset discrete FT (DFT) ; Offsets ; Optical devices ; Optical modulation</subject><ispartof>IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2007-07, Vol.54 (7), p.1599-1611</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3</citedby><cites>FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4268417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pei, Soo-Chang</creatorcontrib><creatorcontrib>Ding, Jian-Jiun</creatorcontrib><title>Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters</title><title>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</title><addtitle>TCSI</addtitle><description>In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We extend the previous works to the cases of complex parameters and complex offsets. We first derive the eigenvectors of the offset discrete FT. They approximate the samples of the eigenfunctions of the continuous offset FT. We find that the eigenfunctions of the offset FT with complex offsets are the smoothed Hermite-Gaussian functions with shifting and modulation. Then we extend the results for the case of the offset FRFT and the offset LCT. We can use the derived eigenfunctions to simulate the self-imaging phenomenon for the optical system with energy-absorbing component, mode selection, encryption, and define the fractional Z-transform and the fractional Laplace transform.</description><subject>Approximation</subject><subject>Circuits</subject><subject>Councils</subject><subject>Cryptography</subject><subject>Discrete Fourier transforms</subject><subject>Discrete transforms</subject><subject>Eigenfunctions</subject><subject>Eigenvalue</subject><subject>Eigenvalues and eigenfunctions</subject><subject>eigenvector</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>fractional Fourier transform (FRFT)</subject><subject>fractional Laplace transform</subject><subject>fractional Z -transform</subject><subject>Karhunen-Loeve transforms</subject><subject>Laplace equations</subject><subject>Laplace transforms</subject><subject>linear canonical transform (LCT)</subject><subject>Modulation</subject><subject>offset discrete FT (DFT)</subject><subject>Offsets</subject><subject>Optical devices</subject><subject>Optical modulation</subject><issn>1549-8328</issn><issn>1057-7122</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kb1PwzAQxS0EEqWwI7FEDDClnD_i2COKWqiEVCSKGC3XsSFVPoqdSPDfkzSoAwPTne5-7w3vIXSJYYYxyLt19rKcEYB0JgGwIEdogpNExCCAHw87k7GgRJyisxC2AEQCxROk5sW7rV1Xm7Zo6hA1Llo0nS-sj3SdRwuv9w9dHs5rr-vgGl-F6K1oP6KsqXal_YpWzgXbhr3sWXtd2db6cI5OnC6DvfidU_S6mK-zx_hp9bDM7p9iQ2XSxizhODeQ5sQY56TjIETOEkqZZkYTBhynmpNcs1QzspHcSpoz0JA6Ik26oVN0O_rufPPZ2dCqqgjGlqWubdMFJSQnGDOAnrz5l6QsAWAp6cHrP-C2j6CPonfjTPIe4T0EI2R8E4K3Tu18UWn_rTCooRg1FKOGYtRYTC-5GiWFtfaAM8IFwyn9Ad-UiUo</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Pei, Soo-Chang</creator><creator>Ding, Jian-Jiun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters</title><author>Pei, Soo-Chang ; Ding, Jian-Jiun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Approximation</topic><topic>Circuits</topic><topic>Councils</topic><topic>Cryptography</topic><topic>Discrete Fourier transforms</topic><topic>Discrete transforms</topic><topic>Eigenfunctions</topic><topic>Eigenvalue</topic><topic>Eigenvalues and eigenfunctions</topic><topic>eigenvector</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>fractional Fourier transform (FRFT)</topic><topic>fractional Laplace transform</topic><topic>fractional Z -transform</topic><topic>Karhunen-Loeve transforms</topic><topic>Laplace equations</topic><topic>Laplace transforms</topic><topic>linear canonical transform (LCT)</topic><topic>Modulation</topic><topic>offset discrete FT (DFT)</topic><topic>Offsets</topic><topic>Optical devices</topic><topic>Optical modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Soo-Chang</creatorcontrib><creatorcontrib>Ding, Jian-Jiun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Soo-Chang</au><au>Ding, Jian-Jiun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters</atitle><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle><stitle>TCSI</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>54</volume><issue>7</issue><spage>1599</spage><epage>1611</epage><pages>1599-1611</pages><issn>1549-8328</issn><issn>1057-7122</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We extend the previous works to the cases of complex parameters and complex offsets. We first derive the eigenvectors of the offset discrete FT. They approximate the samples of the eigenfunctions of the continuous offset FT. We find that the eigenfunctions of the offset FT with complex offsets are the smoothed Hermite-Gaussian functions with shifting and modulation. Then we extend the results for the case of the offset FRFT and the offset LCT. We can use the derived eigenfunctions to simulate the self-imaging phenomenon for the optical system with energy-absorbing component, mode selection, encryption, and define the fractional Z-transform and the fractional Laplace transform.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2007.900182</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2007-07, Vol.54 (7), p.1599-1611
issn 1549-8328
1057-7122
1558-0806
language eng
recordid cdi_ieee_primary_4268417
source IEEE Xplore (Online service)
subjects Approximation
Circuits
Councils
Cryptography
Discrete Fourier transforms
Discrete transforms
Eigenfunctions
Eigenvalue
Eigenvalues and eigenfunctions
eigenvector
Fourier analysis
Fourier transforms
fractional Fourier transform (FRFT)
fractional Laplace transform
fractional Z -transform
Karhunen-Loeve transforms
Laplace equations
Laplace transforms
linear canonical transform (LCT)
Modulation
offset discrete FT (DFT)
Offsets
Optical devices
Optical modulation
title Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenfunctions%20of%20Fourier%20and%20Fractional%20Fourier%20Transforms%20With%20Complex%20Offsets%20and%20Parameters&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%201,%20Fundamental%20theory%20and%20applications&rft.au=Pei,%20Soo-Chang&rft.date=2007-07-01&rft.volume=54&rft.issue=7&rft.spage=1599&rft.epage=1611&rft.pages=1599-1611&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2007.900182&rft_dat=%3Cproquest_cross%3E896211400%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864967236&rft_id=info:pmid/&rft_ieee_id=4268417&rfr_iscdi=true