Loading…
Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters
In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We...
Saved in:
Published in: | IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2007-07, Vol.54 (7), p.1599-1611 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3 |
container_end_page | 1611 |
container_issue | 7 |
container_start_page | 1599 |
container_title | IEEE transactions on circuits and systems. 1, Fundamental theory and applications |
container_volume | 54 |
creator | Pei, Soo-Chang Ding, Jian-Jiun |
description | In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We extend the previous works to the cases of complex parameters and complex offsets. We first derive the eigenvectors of the offset discrete FT. They approximate the samples of the eigenfunctions of the continuous offset FT. We find that the eigenfunctions of the offset FT with complex offsets are the smoothed Hermite-Gaussian functions with shifting and modulation. Then we extend the results for the case of the offset FRFT and the offset LCT. We can use the derived eigenfunctions to simulate the self-imaging phenomenon for the optical system with energy-absorbing component, mode selection, encryption, and define the fractional Z-transform and the fractional Laplace transform. |
doi_str_mv | 10.1109/TCSI.2007.900182 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_ieee_primary_4268417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4268417</ieee_id><sourcerecordid>896211400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3</originalsourceid><addsrcrecordid>eNp9kb1PwzAQxS0EEqWwI7FEDDClnD_i2COKWqiEVCSKGC3XsSFVPoqdSPDfkzSoAwPTne5-7w3vIXSJYYYxyLt19rKcEYB0JgGwIEdogpNExCCAHw87k7GgRJyisxC2AEQCxROk5sW7rV1Xm7Zo6hA1Llo0nS-sj3SdRwuv9w9dHs5rr-vgGl-F6K1oP6KsqXal_YpWzgXbhr3sWXtd2db6cI5OnC6DvfidU_S6mK-zx_hp9bDM7p9iQ2XSxizhODeQ5sQY56TjIETOEkqZZkYTBhynmpNcs1QzspHcSpoz0JA6Ik26oVN0O_rufPPZ2dCqqgjGlqWubdMFJSQnGDOAnrz5l6QsAWAp6cHrP-C2j6CPonfjTPIe4T0EI2R8E4K3Tu18UWn_rTCooRg1FKOGYtRYTC-5GiWFtfaAM8IFwyn9Ad-UiUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864967236</pqid></control><display><type>article</type><title>Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters</title><source>IEEE Xplore (Online service)</source><creator>Pei, Soo-Chang ; Ding, Jian-Jiun</creator><creatorcontrib>Pei, Soo-Chang ; Ding, Jian-Jiun</creatorcontrib><description>In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We extend the previous works to the cases of complex parameters and complex offsets. We first derive the eigenvectors of the offset discrete FT. They approximate the samples of the eigenfunctions of the continuous offset FT. We find that the eigenfunctions of the offset FT with complex offsets are the smoothed Hermite-Gaussian functions with shifting and modulation. Then we extend the results for the case of the offset FRFT and the offset LCT. We can use the derived eigenfunctions to simulate the self-imaging phenomenon for the optical system with energy-absorbing component, mode selection, encryption, and define the fractional Z-transform and the fractional Laplace transform.</description><identifier>ISSN: 1549-8328</identifier><identifier>ISSN: 1057-7122</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2007.900182</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Circuits ; Councils ; Cryptography ; Discrete Fourier transforms ; Discrete transforms ; Eigenfunctions ; Eigenvalue ; Eigenvalues and eigenfunctions ; eigenvector ; Fourier analysis ; Fourier transforms ; fractional Fourier transform (FRFT) ; fractional Laplace transform ; fractional Z -transform ; Karhunen-Loeve transforms ; Laplace equations ; Laplace transforms ; linear canonical transform (LCT) ; Modulation ; offset discrete FT (DFT) ; Offsets ; Optical devices ; Optical modulation</subject><ispartof>IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2007-07, Vol.54 (7), p.1599-1611</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3</citedby><cites>FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4268417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pei, Soo-Chang</creatorcontrib><creatorcontrib>Ding, Jian-Jiun</creatorcontrib><title>Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters</title><title>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</title><addtitle>TCSI</addtitle><description>In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We extend the previous works to the cases of complex parameters and complex offsets. We first derive the eigenvectors of the offset discrete FT. They approximate the samples of the eigenfunctions of the continuous offset FT. We find that the eigenfunctions of the offset FT with complex offsets are the smoothed Hermite-Gaussian functions with shifting and modulation. Then we extend the results for the case of the offset FRFT and the offset LCT. We can use the derived eigenfunctions to simulate the self-imaging phenomenon for the optical system with energy-absorbing component, mode selection, encryption, and define the fractional Z-transform and the fractional Laplace transform.</description><subject>Approximation</subject><subject>Circuits</subject><subject>Councils</subject><subject>Cryptography</subject><subject>Discrete Fourier transforms</subject><subject>Discrete transforms</subject><subject>Eigenfunctions</subject><subject>Eigenvalue</subject><subject>Eigenvalues and eigenfunctions</subject><subject>eigenvector</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>fractional Fourier transform (FRFT)</subject><subject>fractional Laplace transform</subject><subject>fractional Z -transform</subject><subject>Karhunen-Loeve transforms</subject><subject>Laplace equations</subject><subject>Laplace transforms</subject><subject>linear canonical transform (LCT)</subject><subject>Modulation</subject><subject>offset discrete FT (DFT)</subject><subject>Offsets</subject><subject>Optical devices</subject><subject>Optical modulation</subject><issn>1549-8328</issn><issn>1057-7122</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kb1PwzAQxS0EEqWwI7FEDDClnD_i2COKWqiEVCSKGC3XsSFVPoqdSPDfkzSoAwPTne5-7w3vIXSJYYYxyLt19rKcEYB0JgGwIEdogpNExCCAHw87k7GgRJyisxC2AEQCxROk5sW7rV1Xm7Zo6hA1Llo0nS-sj3SdRwuv9w9dHs5rr-vgGl-F6K1oP6KsqXal_YpWzgXbhr3sWXtd2db6cI5OnC6DvfidU_S6mK-zx_hp9bDM7p9iQ2XSxizhODeQ5sQY56TjIETOEkqZZkYTBhynmpNcs1QzspHcSpoz0JA6Ik26oVN0O_rufPPZ2dCqqgjGlqWubdMFJSQnGDOAnrz5l6QsAWAp6cHrP-C2j6CPonfjTPIe4T0EI2R8E4K3Tu18UWn_rTCooRg1FKOGYtRYTC-5GiWFtfaAM8IFwyn9Ad-UiUo</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Pei, Soo-Chang</creator><creator>Ding, Jian-Jiun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters</title><author>Pei, Soo-Chang ; Ding, Jian-Jiun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Approximation</topic><topic>Circuits</topic><topic>Councils</topic><topic>Cryptography</topic><topic>Discrete Fourier transforms</topic><topic>Discrete transforms</topic><topic>Eigenfunctions</topic><topic>Eigenvalue</topic><topic>Eigenvalues and eigenfunctions</topic><topic>eigenvector</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>fractional Fourier transform (FRFT)</topic><topic>fractional Laplace transform</topic><topic>fractional Z -transform</topic><topic>Karhunen-Loeve transforms</topic><topic>Laplace equations</topic><topic>Laplace transforms</topic><topic>linear canonical transform (LCT)</topic><topic>Modulation</topic><topic>offset discrete FT (DFT)</topic><topic>Offsets</topic><topic>Optical devices</topic><topic>Optical modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Soo-Chang</creatorcontrib><creatorcontrib>Ding, Jian-Jiun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Soo-Chang</au><au>Ding, Jian-Jiun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters</atitle><jtitle>IEEE transactions on circuits and systems. 1, Fundamental theory and applications</jtitle><stitle>TCSI</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>54</volume><issue>7</issue><spage>1599</spage><epage>1611</epage><pages>1599-1611</pages><issn>1549-8328</issn><issn>1057-7122</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>In this paper, we derive the eigenfunctions of the Fourier transform (FT), the fractional FT (FRFT), and the linear canonical transform (LCT) with (1) complex parameters and (2) complex offsets. The eigenfunctions in the cases where the parameters and offsets are real were derived in literature. We extend the previous works to the cases of complex parameters and complex offsets. We first derive the eigenvectors of the offset discrete FT. They approximate the samples of the eigenfunctions of the continuous offset FT. We find that the eigenfunctions of the offset FT with complex offsets are the smoothed Hermite-Gaussian functions with shifting and modulation. Then we extend the results for the case of the offset FRFT and the offset LCT. We can use the derived eigenfunctions to simulate the self-imaging phenomenon for the optical system with energy-absorbing component, mode selection, encryption, and define the fractional Z-transform and the fractional Laplace transform.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2007.900182</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. 1, Fundamental theory and applications, 2007-07, Vol.54 (7), p.1599-1611 |
issn | 1549-8328 1057-7122 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_4268417 |
source | IEEE Xplore (Online service) |
subjects | Approximation Circuits Councils Cryptography Discrete Fourier transforms Discrete transforms Eigenfunctions Eigenvalue Eigenvalues and eigenfunctions eigenvector Fourier analysis Fourier transforms fractional Fourier transform (FRFT) fractional Laplace transform fractional Z -transform Karhunen-Loeve transforms Laplace equations Laplace transforms linear canonical transform (LCT) Modulation offset discrete FT (DFT) Offsets Optical devices Optical modulation |
title | Eigenfunctions of Fourier and Fractional Fourier Transforms With Complex Offsets and Parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenfunctions%20of%20Fourier%20and%20Fractional%20Fourier%20Transforms%20With%20Complex%20Offsets%20and%20Parameters&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%201,%20Fundamental%20theory%20and%20applications&rft.au=Pei,%20Soo-Chang&rft.date=2007-07-01&rft.volume=54&rft.issue=7&rft.spage=1599&rft.epage=1611&rft.pages=1599-1611&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2007.900182&rft_dat=%3Cproquest_cross%3E896211400%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-4561dc07d2ccff9f6088d45334a4ca240617a62da47a42b96e93d40a07f29c7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864967236&rft_id=info:pmid/&rft_ieee_id=4268417&rfr_iscdi=true |