Loading…

Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices

The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatial...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2007-06, Vol.17 (2), p.902-905
Main Authors: Zhuravel, A.P., Anlage, S.M., Ustinov, A.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943
cites cdi_FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943
container_end_page 905
container_issue 2
container_start_page 902
container_title IEEE transactions on applied superconductivity
container_volume 17
creator Zhuravel, A.P.
Anlage, S.M.
Ustinov, A.V.
description The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analysed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation photoresponse on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains.
doi_str_mv 10.1109/TASC.2007.897322
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4277847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277847</ieee_id><sourcerecordid>2544764501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943</originalsourceid><addsrcrecordid>eNp9kU1PGzEQQFeISoXQeyUuKyTKacPYXn8doxRaJEqlhp4txzuLHG28wc5S8e_xkohKHDjZY7959swUxVcCU0JAX97PFvMpBZBTpSWj9KA4IpyrinLCD_MeOKkUpexzcZzSCoDUquZHRXeztg8-PJR9W_7yLvbJ9RvvykU_RIdpPP6Dyaetf8LShiZH1r0Gd33ofEAb_dZn0IdyMWwwuj40Qyay8tX3z2b2Oz75bDspPrW2S_hlv06Kv9dX9_Of1e3vHzfz2W3lmGLbSjhkYsmFBN5I0Fy6ZdM6h1wLKRjhAKBFQ4VoqZNWarZkLWILmIuCWtdsUlzsvJvYPw6Ytmbtk8OuswH7IRmlIMtBkUx--5BkgrH82Kg8eweucodCrsJoQiklNZcZgh009jFFbM0m-rWNz4aAGadkximZcUpmN6Wccr732uRs10YbnE__8zQQYPX40dMd5xHx7bqmUqpashdz1Jq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912221457</pqid></control><display><type>article</type><title>Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices</title><source>IEEE Xplore (Online service)</source><creator>Zhuravel, A.P. ; Anlage, S.M. ; Ustinov, A.V.</creator><creatorcontrib>Zhuravel, A.P. ; Anlage, S.M. ; Ustinov, A.V.</creatorcontrib><description>The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analysed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation photoresponse on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2007.897322</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>AGING MECHANISMS ; Applied sciences ; Circuit properties ; COPPER OXIDE ; Devices ; Electric, optical and optoelectronic circuits ; ELECTRICAL CONDUCTIVITY ; Electronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; ELECTRONIC PRODUCTS ; Electronics ; Exact sciences and technology ; High- {\rm T}_{\rm c} superconductors ; Intermodulation ; laser scanning microscopy ; LASERS ; Masers ; MICROSCOPY ; Microwave and submillimeter wave devices, electron transfer devices ; microwave devices ; Microwave imaging ; Microwave theory and techniques ; MICROWAVES ; Nonlinearity ; Oscillators, resonators, synthetizers ; Planar transmission lines ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Strips ; Superconducting devices ; Superconducting microwave devices ; Superconducting thin films ; Superconducting transmission lines ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; THIN FILMS ; Two dimensional ; YBCO superconductors</subject><ispartof>IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.902-905</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943</citedby><cites>FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19010341$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuravel, A.P.</creatorcontrib><creatorcontrib>Anlage, S.M.</creatorcontrib><creatorcontrib>Ustinov, A.V.</creatorcontrib><title>Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analysed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation photoresponse on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains.</description><subject>AGING MECHANISMS</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>COPPER OXIDE</subject><subject>Devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>ELECTRONIC PRODUCTS</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>High- {\rm T}_{\rm c} superconductors</subject><subject>Intermodulation</subject><subject>laser scanning microscopy</subject><subject>LASERS</subject><subject>Masers</subject><subject>MICROSCOPY</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>microwave devices</subject><subject>Microwave imaging</subject><subject>Microwave theory and techniques</subject><subject>MICROWAVES</subject><subject>Nonlinearity</subject><subject>Oscillators, resonators, synthetizers</subject><subject>Planar transmission lines</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Strips</subject><subject>Superconducting devices</subject><subject>Superconducting microwave devices</subject><subject>Superconducting thin films</subject><subject>Superconducting transmission lines</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>THIN FILMS</subject><subject>Two dimensional</subject><subject>YBCO superconductors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQQFeISoXQeyUuKyTKacPYXn8doxRaJEqlhp4txzuLHG28wc5S8e_xkohKHDjZY7959swUxVcCU0JAX97PFvMpBZBTpSWj9KA4IpyrinLCD_MeOKkUpexzcZzSCoDUquZHRXeztg8-PJR9W_7yLvbJ9RvvykU_RIdpPP6Dyaetf8LShiZH1r0Gd33ofEAb_dZn0IdyMWwwuj40Qyay8tX3z2b2Oz75bDspPrW2S_hlv06Kv9dX9_Of1e3vHzfz2W3lmGLbSjhkYsmFBN5I0Fy6ZdM6h1wLKRjhAKBFQ4VoqZNWarZkLWILmIuCWtdsUlzsvJvYPw6Ytmbtk8OuswH7IRmlIMtBkUx--5BkgrH82Kg8eweucodCrsJoQiklNZcZgh009jFFbM0m-rWNz4aAGadkximZcUpmN6Wccr732uRs10YbnE__8zQQYPX40dMd5xHx7bqmUqpashdz1Jq4</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Zhuravel, A.P.</creator><creator>Anlage, S.M.</creator><creator>Ustinov, A.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20070601</creationdate><title>Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices</title><author>Zhuravel, A.P. ; Anlage, S.M. ; Ustinov, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>AGING MECHANISMS</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>COPPER OXIDE</topic><topic>Devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>ELECTRONIC PRODUCTS</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>High- {\rm T}_{\rm c} superconductors</topic><topic>Intermodulation</topic><topic>laser scanning microscopy</topic><topic>LASERS</topic><topic>Masers</topic><topic>MICROSCOPY</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>microwave devices</topic><topic>Microwave imaging</topic><topic>Microwave theory and techniques</topic><topic>MICROWAVES</topic><topic>Nonlinearity</topic><topic>Oscillators, resonators, synthetizers</topic><topic>Planar transmission lines</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Strips</topic><topic>Superconducting devices</topic><topic>Superconducting microwave devices</topic><topic>Superconducting thin films</topic><topic>Superconducting transmission lines</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>THIN FILMS</topic><topic>Two dimensional</topic><topic>YBCO superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuravel, A.P.</creatorcontrib><creatorcontrib>Anlage, S.M.</creatorcontrib><creatorcontrib>Ustinov, A.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuravel, A.P.</au><au>Anlage, S.M.</au><au>Ustinov, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>902</spage><epage>905</epage><pages>902-905</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analysed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation photoresponse on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2007.897322</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.902-905
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_4277847
source IEEE Xplore (Online service)
subjects AGING MECHANISMS
Applied sciences
Circuit properties
COPPER OXIDE
Devices
Electric, optical and optoelectronic circuits
ELECTRICAL CONDUCTIVITY
Electronic circuits
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
ELECTRONIC PRODUCTS
Electronics
Exact sciences and technology
High- {\rm T}_{\rm c} superconductors
Intermodulation
laser scanning microscopy
LASERS
Masers
MICROSCOPY
Microwave and submillimeter wave devices, electron transfer devices
microwave devices
Microwave imaging
Microwave theory and techniques
MICROWAVES
Nonlinearity
Oscillators, resonators, synthetizers
Planar transmission lines
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Strips
Superconducting devices
Superconducting microwave devices
Superconducting thin films
Superconducting transmission lines
SUPERCONDUCTIVITY
SUPERCONDUCTORS
THIN FILMS
Two dimensional
YBCO superconductors
title Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20Microscopic%20Sources%20of%20Resistive%20and%20Reactive%20Nonlinearities%20in%20Superconducting%20Microwave%20Devices&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Zhuravel,%20A.P.&rft.date=2007-06-01&rft.volume=17&rft.issue=2&rft.spage=902&rft.epage=905&rft.pages=902-905&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2007.897322&rft_dat=%3Cproquest_ieee_%3E2544764501%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912221457&rft_id=info:pmid/&rft_ieee_id=4277847&rfr_iscdi=true