Loading…
Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices
The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatial...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2007-06, Vol.17 (2), p.902-905 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943 |
container_end_page | 905 |
container_issue | 2 |
container_start_page | 902 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 17 |
creator | Zhuravel, A.P. Anlage, S.M. Ustinov, A.V. |
description | The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analysed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation photoresponse on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains. |
doi_str_mv | 10.1109/TASC.2007.897322 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_4277847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4277847</ieee_id><sourcerecordid>2544764501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943</originalsourceid><addsrcrecordid>eNp9kU1PGzEQQFeISoXQeyUuKyTKacPYXn8doxRaJEqlhp4txzuLHG28wc5S8e_xkohKHDjZY7959swUxVcCU0JAX97PFvMpBZBTpSWj9KA4IpyrinLCD_MeOKkUpexzcZzSCoDUquZHRXeztg8-PJR9W_7yLvbJ9RvvykU_RIdpPP6Dyaetf8LShiZH1r0Gd33ofEAb_dZn0IdyMWwwuj40Qyay8tX3z2b2Oz75bDspPrW2S_hlv06Kv9dX9_Of1e3vHzfz2W3lmGLbSjhkYsmFBN5I0Fy6ZdM6h1wLKRjhAKBFQ4VoqZNWarZkLWILmIuCWtdsUlzsvJvYPw6Ytmbtk8OuswH7IRmlIMtBkUx--5BkgrH82Kg8eweucodCrsJoQiklNZcZgh009jFFbM0m-rWNz4aAGadkximZcUpmN6Wccr732uRs10YbnE__8zQQYPX40dMd5xHx7bqmUqpashdz1Jq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912221457</pqid></control><display><type>article</type><title>Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices</title><source>IEEE Xplore (Online service)</source><creator>Zhuravel, A.P. ; Anlage, S.M. ; Ustinov, A.V.</creator><creatorcontrib>Zhuravel, A.P. ; Anlage, S.M. ; Ustinov, A.V.</creatorcontrib><description>The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analysed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation photoresponse on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2007.897322</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>AGING MECHANISMS ; Applied sciences ; Circuit properties ; COPPER OXIDE ; Devices ; Electric, optical and optoelectronic circuits ; ELECTRICAL CONDUCTIVITY ; Electronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; ELECTRONIC PRODUCTS ; Electronics ; Exact sciences and technology ; High- {\rm T}_{\rm c} superconductors ; Intermodulation ; laser scanning microscopy ; LASERS ; Masers ; MICROSCOPY ; Microwave and submillimeter wave devices, electron transfer devices ; microwave devices ; Microwave imaging ; Microwave theory and techniques ; MICROWAVES ; Nonlinearity ; Oscillators, resonators, synthetizers ; Planar transmission lines ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Strips ; Superconducting devices ; Superconducting microwave devices ; Superconducting thin films ; Superconducting transmission lines ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; THIN FILMS ; Two dimensional ; YBCO superconductors</subject><ispartof>IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.902-905</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943</citedby><cites>FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4277847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19010341$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuravel, A.P.</creatorcontrib><creatorcontrib>Anlage, S.M.</creatorcontrib><creatorcontrib>Ustinov, A.V.</creatorcontrib><title>Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analysed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation photoresponse on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains.</description><subject>AGING MECHANISMS</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>COPPER OXIDE</subject><subject>Devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>ELECTRONIC PRODUCTS</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>High- {\rm T}_{\rm c} superconductors</subject><subject>Intermodulation</subject><subject>laser scanning microscopy</subject><subject>LASERS</subject><subject>Masers</subject><subject>MICROSCOPY</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>microwave devices</subject><subject>Microwave imaging</subject><subject>Microwave theory and techniques</subject><subject>MICROWAVES</subject><subject>Nonlinearity</subject><subject>Oscillators, resonators, synthetizers</subject><subject>Planar transmission lines</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Strips</subject><subject>Superconducting devices</subject><subject>Superconducting microwave devices</subject><subject>Superconducting thin films</subject><subject>Superconducting transmission lines</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>THIN FILMS</subject><subject>Two dimensional</subject><subject>YBCO superconductors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQQFeISoXQeyUuKyTKacPYXn8doxRaJEqlhp4txzuLHG28wc5S8e_xkohKHDjZY7959swUxVcCU0JAX97PFvMpBZBTpSWj9KA4IpyrinLCD_MeOKkUpexzcZzSCoDUquZHRXeztg8-PJR9W_7yLvbJ9RvvykU_RIdpPP6Dyaetf8LShiZH1r0Gd33ofEAb_dZn0IdyMWwwuj40Qyay8tX3z2b2Oz75bDspPrW2S_hlv06Kv9dX9_Of1e3vHzfz2W3lmGLbSjhkYsmFBN5I0Fy6ZdM6h1wLKRjhAKBFQ4VoqZNWarZkLWILmIuCWtdsUlzsvJvYPw6Ytmbtk8OuswH7IRmlIMtBkUx--5BkgrH82Kg8eweucodCrsJoQiklNZcZgh009jFFbM0m-rWNz4aAGadkximZcUpmN6Wccr732uRs10YbnE__8zQQYPX40dMd5xHx7bqmUqpashdz1Jq4</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Zhuravel, A.P.</creator><creator>Anlage, S.M.</creator><creator>Ustinov, A.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20070601</creationdate><title>Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices</title><author>Zhuravel, A.P. ; Anlage, S.M. ; Ustinov, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>AGING MECHANISMS</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>COPPER OXIDE</topic><topic>Devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>ELECTRONIC PRODUCTS</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>High- {\rm T}_{\rm c} superconductors</topic><topic>Intermodulation</topic><topic>laser scanning microscopy</topic><topic>LASERS</topic><topic>Masers</topic><topic>MICROSCOPY</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>microwave devices</topic><topic>Microwave imaging</topic><topic>Microwave theory and techniques</topic><topic>MICROWAVES</topic><topic>Nonlinearity</topic><topic>Oscillators, resonators, synthetizers</topic><topic>Planar transmission lines</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Strips</topic><topic>Superconducting devices</topic><topic>Superconducting microwave devices</topic><topic>Superconducting thin films</topic><topic>Superconducting transmission lines</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>THIN FILMS</topic><topic>Two dimensional</topic><topic>YBCO superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuravel, A.P.</creatorcontrib><creatorcontrib>Anlage, S.M.</creatorcontrib><creatorcontrib>Ustinov, A.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuravel, A.P.</au><au>Anlage, S.M.</au><au>Ustinov, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>902</spage><epage>905</epage><pages>902-905</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The technique of low-temperature laser scanning microscopy (LSM) has been applied to the investigation of local microwave properties in operating YBa 2 Cu 3 O 7 /LaAlO 3 thin-film resonators patterned into a meandering strip transmission line. By using a modified newly developed procedure of spatially-resolved complex impedance partition, the influence of inhomogeneous current flow on the formation of nonlinear (NL) microwave response in such planar devices is analysed in terms of the independent impact from resistive and inductive components. The modified procedure developed here is dramatically faster than our previous method. The LSM capability to probe the spatial variations of two-tone, third-order intermodulation photoresponse on micron length scales is used to find the 2D distribution of the local sources of microwave NL. The results show that the dominant sources of microwave NL are strongly localized in the resistive domains.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2007.897322</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2007-06, Vol.17 (2), p.902-905 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_4277847 |
source | IEEE Xplore (Online service) |
subjects | AGING MECHANISMS Applied sciences Circuit properties COPPER OXIDE Devices Electric, optical and optoelectronic circuits ELECTRICAL CONDUCTIVITY Electronic circuits Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ELECTRONIC PRODUCTS Electronics Exact sciences and technology High- {\rm T}_{\rm c} superconductors Intermodulation laser scanning microscopy LASERS Masers MICROSCOPY Microwave and submillimeter wave devices, electron transfer devices microwave devices Microwave imaging Microwave theory and techniques MICROWAVES Nonlinearity Oscillators, resonators, synthetizers Planar transmission lines Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Strips Superconducting devices Superconducting microwave devices Superconducting thin films Superconducting transmission lines SUPERCONDUCTIVITY SUPERCONDUCTORS THIN FILMS Two dimensional YBCO superconductors |
title | Imaging of Microscopic Sources of Resistive and Reactive Nonlinearities in Superconducting Microwave Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20Microscopic%20Sources%20of%20Resistive%20and%20Reactive%20Nonlinearities%20in%20Superconducting%20Microwave%20Devices&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Zhuravel,%20A.P.&rft.date=2007-06-01&rft.volume=17&rft.issue=2&rft.spage=902&rft.epage=905&rft.pages=902-905&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2007.897322&rft_dat=%3Cproquest_ieee_%3E2544764501%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-6ce36b56705d70957cbdfcce5967631500096d266f2c7a793b3feef0e01404943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912221457&rft_id=info:pmid/&rft_ieee_id=4277847&rfr_iscdi=true |