Loading…

Optimal Control and the Aircraft Radar Evasion Problem

This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of ra...

Full description

Saved in:
Bibliographic Details
Main Authors: Hussein, I.I., Zeitz, F.H., Bloch, A.M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1072
container_issue
container_start_page 1067
container_title
container_volume
creator Hussein, I.I.
Zeitz, F.H.
Bloch, A.M.
description This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of radar units. In this paper we first discuss the general radar evasion problem. Given that the aircraft equations of motion are nonholonomically constrained, the main mathematical tools used in this paper stem from nonlinear differential geometry. Hence, we introduce the constrained dynamic interpolation optimal control problem and state the optimality conditions. We then apply these conditions to the radar evasion problem. Finally, we provide numerical simulations that illustrate the ideas proposed in this paper.
doi_str_mv 10.1109/ACC.2007.4282835
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4282835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4282835</ieee_id><sourcerecordid>4282835</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c5b8d6ca491d5c4fe743c1fb63a799bebeb821f5dcc3b61dcf19ab032669c0c53</originalsourceid><addsrcrecordid>eNo1j0tLw0AUhccXmNbuBTfzBxLnzitzlyW0KhQq0n2ZJ0bSpEyC4L83YOUszuLAx3cIeQRWATB8XjdNxRmrK8kNN0JdkQVILiVDg_qaFFzUplRGww1ZYW3-NyNvScFqKUrQgPdkMY5fjAGiZgXR-_PUnmxHm6Gf8tBR2wc6fUa6brPPNk30wwab6ebbju3Q0_c8uC6eHshdst0YV5deksN2c2hey93-5a1Z78oW2VR65UzQ3kqEoLxMcZbwkJwWtkZ0cY7hkFTwXjgNwSdA65jgWqNnXoklefrDtjHG4znPpvnneLkvfgEtGEm-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Control and the Aircraft Radar Evasion Problem</title><source>IEEE Xplore All Conference Series</source><creator>Hussein, I.I. ; Zeitz, F.H. ; Bloch, A.M.</creator><creatorcontrib>Hussein, I.I. ; Zeitz, F.H. ; Bloch, A.M.</creatorcontrib><description>This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of radar units. In this paper we first discuss the general radar evasion problem. Given that the aircraft equations of motion are nonholonomically constrained, the main mathematical tools used in this paper stem from nonlinear differential geometry. Hence, we introduce the constrained dynamic interpolation optimal control problem and state the optimality conditions. We then apply these conditions to the radar evasion problem. Finally, we provide numerical simulations that illustrate the ideas proposed in this paper.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424409884</identifier><identifier>ISBN: 1424409888</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424409896</identifier><identifier>EISBN: 9781424409891</identifier><identifier>DOI: 10.1109/ACC.2007.4282835</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace control ; Airborne radar ; Aircraft ; Differential equations ; Geometry ; Missiles ; Nonlinear equations ; Optimal control ; Path planning ; Unmanned aerial vehicles</subject><ispartof>2007 American Control Conference, 2007, p.1067-1072</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4282835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4282835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hussein, I.I.</creatorcontrib><creatorcontrib>Zeitz, F.H.</creatorcontrib><creatorcontrib>Bloch, A.M.</creatorcontrib><title>Optimal Control and the Aircraft Radar Evasion Problem</title><title>2007 American Control Conference</title><addtitle>ACC</addtitle><description>This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of radar units. In this paper we first discuss the general radar evasion problem. Given that the aircraft equations of motion are nonholonomically constrained, the main mathematical tools used in this paper stem from nonlinear differential geometry. Hence, we introduce the constrained dynamic interpolation optimal control problem and state the optimality conditions. We then apply these conditions to the radar evasion problem. Finally, we provide numerical simulations that illustrate the ideas proposed in this paper.</description><subject>Aerospace control</subject><subject>Airborne radar</subject><subject>Aircraft</subject><subject>Differential equations</subject><subject>Geometry</subject><subject>Missiles</subject><subject>Nonlinear equations</subject><subject>Optimal control</subject><subject>Path planning</subject><subject>Unmanned aerial vehicles</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424409884</isbn><isbn>1424409888</isbn><isbn>1424409896</isbn><isbn>9781424409891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j0tLw0AUhccXmNbuBTfzBxLnzitzlyW0KhQq0n2ZJ0bSpEyC4L83YOUszuLAx3cIeQRWATB8XjdNxRmrK8kNN0JdkQVILiVDg_qaFFzUplRGww1ZYW3-NyNvScFqKUrQgPdkMY5fjAGiZgXR-_PUnmxHm6Gf8tBR2wc6fUa6brPPNk30wwab6ebbju3Q0_c8uC6eHshdst0YV5deksN2c2hey93-5a1Z78oW2VR65UzQ3kqEoLxMcZbwkJwWtkZ0cY7hkFTwXjgNwSdA65jgWqNnXoklefrDtjHG4znPpvnneLkvfgEtGEm-</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Hussein, I.I.</creator><creator>Zeitz, F.H.</creator><creator>Bloch, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Optimal Control and the Aircraft Radar Evasion Problem</title><author>Hussein, I.I. ; Zeitz, F.H. ; Bloch, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c5b8d6ca491d5c4fe743c1fb63a799bebeb821f5dcc3b61dcf19ab032669c0c53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerospace control</topic><topic>Airborne radar</topic><topic>Aircraft</topic><topic>Differential equations</topic><topic>Geometry</topic><topic>Missiles</topic><topic>Nonlinear equations</topic><topic>Optimal control</topic><topic>Path planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Hussein, I.I.</creatorcontrib><creatorcontrib>Zeitz, F.H.</creatorcontrib><creatorcontrib>Bloch, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hussein, I.I.</au><au>Zeitz, F.H.</au><au>Bloch, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Control and the Aircraft Radar Evasion Problem</atitle><btitle>2007 American Control Conference</btitle><stitle>ACC</stitle><date>2007-07</date><risdate>2007</risdate><spage>1067</spage><epage>1072</epage><pages>1067-1072</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424409884</isbn><isbn>1424409888</isbn><eisbn>1424409896</eisbn><eisbn>9781424409891</eisbn><abstract>This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of radar units. In this paper we first discuss the general radar evasion problem. Given that the aircraft equations of motion are nonholonomically constrained, the main mathematical tools used in this paper stem from nonlinear differential geometry. Hence, we introduce the constrained dynamic interpolation optimal control problem and state the optimality conditions. We then apply these conditions to the radar evasion problem. Finally, we provide numerical simulations that illustrate the ideas proposed in this paper.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2007.4282835</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2007 American Control Conference, 2007, p.1067-1072
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_4282835
source IEEE Xplore All Conference Series
subjects Aerospace control
Airborne radar
Aircraft
Differential equations
Geometry
Missiles
Nonlinear equations
Optimal control
Path planning
Unmanned aerial vehicles
title Optimal Control and the Aircraft Radar Evasion Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Control%20and%20the%20Aircraft%20Radar%20Evasion%20Problem&rft.btitle=2007%20American%20Control%20Conference&rft.au=Hussein,%20I.I.&rft.date=2007-07&rft.spage=1067&rft.epage=1072&rft.pages=1067-1072&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424409884&rft.isbn_list=1424409888&rft_id=info:doi/10.1109/ACC.2007.4282835&rft.eisbn=1424409896&rft.eisbn_list=9781424409891&rft_dat=%3Cieee_CHZPO%3E4282835%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-c5b8d6ca491d5c4fe743c1fb63a799bebeb821f5dcc3b61dcf19ab032669c0c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4282835&rfr_iscdi=true