Loading…
Optimal Control and the Aircraft Radar Evasion Problem
This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of ra...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1072 |
container_issue | |
container_start_page | 1067 |
container_title | |
container_volume | |
creator | Hussein, I.I. Zeitz, F.H. Bloch, A.M. |
description | This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of radar units. In this paper we first discuss the general radar evasion problem. Given that the aircraft equations of motion are nonholonomically constrained, the main mathematical tools used in this paper stem from nonlinear differential geometry. Hence, we introduce the constrained dynamic interpolation optimal control problem and state the optimality conditions. We then apply these conditions to the radar evasion problem. Finally, we provide numerical simulations that illustrate the ideas proposed in this paper. |
doi_str_mv | 10.1109/ACC.2007.4282835 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4282835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4282835</ieee_id><sourcerecordid>4282835</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c5b8d6ca491d5c4fe743c1fb63a799bebeb821f5dcc3b61dcf19ab032669c0c53</originalsourceid><addsrcrecordid>eNo1j0tLw0AUhccXmNbuBTfzBxLnzitzlyW0KhQq0n2ZJ0bSpEyC4L83YOUszuLAx3cIeQRWATB8XjdNxRmrK8kNN0JdkQVILiVDg_qaFFzUplRGww1ZYW3-NyNvScFqKUrQgPdkMY5fjAGiZgXR-_PUnmxHm6Gf8tBR2wc6fUa6brPPNk30wwab6ebbju3Q0_c8uC6eHshdst0YV5deksN2c2hey93-5a1Z78oW2VR65UzQ3kqEoLxMcZbwkJwWtkZ0cY7hkFTwXjgNwSdA65jgWqNnXoklefrDtjHG4znPpvnneLkvfgEtGEm-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal Control and the Aircraft Radar Evasion Problem</title><source>IEEE Xplore All Conference Series</source><creator>Hussein, I.I. ; Zeitz, F.H. ; Bloch, A.M.</creator><creatorcontrib>Hussein, I.I. ; Zeitz, F.H. ; Bloch, A.M.</creatorcontrib><description>This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of radar units. In this paper we first discuss the general radar evasion problem. Given that the aircraft equations of motion are nonholonomically constrained, the main mathematical tools used in this paper stem from nonlinear differential geometry. Hence, we introduce the constrained dynamic interpolation optimal control problem and state the optimality conditions. We then apply these conditions to the radar evasion problem. Finally, we provide numerical simulations that illustrate the ideas proposed in this paper.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424409884</identifier><identifier>ISBN: 1424409888</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424409896</identifier><identifier>EISBN: 9781424409891</identifier><identifier>DOI: 10.1109/ACC.2007.4282835</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace control ; Airborne radar ; Aircraft ; Differential equations ; Geometry ; Missiles ; Nonlinear equations ; Optimal control ; Path planning ; Unmanned aerial vehicles</subject><ispartof>2007 American Control Conference, 2007, p.1067-1072</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4282835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4282835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hussein, I.I.</creatorcontrib><creatorcontrib>Zeitz, F.H.</creatorcontrib><creatorcontrib>Bloch, A.M.</creatorcontrib><title>Optimal Control and the Aircraft Radar Evasion Problem</title><title>2007 American Control Conference</title><addtitle>ACC</addtitle><description>This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of radar units. In this paper we first discuss the general radar evasion problem. Given that the aircraft equations of motion are nonholonomically constrained, the main mathematical tools used in this paper stem from nonlinear differential geometry. Hence, we introduce the constrained dynamic interpolation optimal control problem and state the optimality conditions. We then apply these conditions to the radar evasion problem. Finally, we provide numerical simulations that illustrate the ideas proposed in this paper.</description><subject>Aerospace control</subject><subject>Airborne radar</subject><subject>Aircraft</subject><subject>Differential equations</subject><subject>Geometry</subject><subject>Missiles</subject><subject>Nonlinear equations</subject><subject>Optimal control</subject><subject>Path planning</subject><subject>Unmanned aerial vehicles</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424409884</isbn><isbn>1424409888</isbn><isbn>1424409896</isbn><isbn>9781424409891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j0tLw0AUhccXmNbuBTfzBxLnzitzlyW0KhQq0n2ZJ0bSpEyC4L83YOUszuLAx3cIeQRWATB8XjdNxRmrK8kNN0JdkQVILiVDg_qaFFzUplRGww1ZYW3-NyNvScFqKUrQgPdkMY5fjAGiZgXR-_PUnmxHm6Gf8tBR2wc6fUa6brPPNk30wwab6ebbju3Q0_c8uC6eHshdst0YV5deksN2c2hey93-5a1Z78oW2VR65UzQ3kqEoLxMcZbwkJwWtkZ0cY7hkFTwXjgNwSdA65jgWqNnXoklefrDtjHG4znPpvnneLkvfgEtGEm-</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Hussein, I.I.</creator><creator>Zeitz, F.H.</creator><creator>Bloch, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200707</creationdate><title>Optimal Control and the Aircraft Radar Evasion Problem</title><author>Hussein, I.I. ; Zeitz, F.H. ; Bloch, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c5b8d6ca491d5c4fe743c1fb63a799bebeb821f5dcc3b61dcf19ab032669c0c53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerospace control</topic><topic>Airborne radar</topic><topic>Aircraft</topic><topic>Differential equations</topic><topic>Geometry</topic><topic>Missiles</topic><topic>Nonlinear equations</topic><topic>Optimal control</topic><topic>Path planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Hussein, I.I.</creatorcontrib><creatorcontrib>Zeitz, F.H.</creatorcontrib><creatorcontrib>Bloch, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hussein, I.I.</au><au>Zeitz, F.H.</au><au>Bloch, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal Control and the Aircraft Radar Evasion Problem</atitle><btitle>2007 American Control Conference</btitle><stitle>ACC</stitle><date>2007-07</date><risdate>2007</risdate><spage>1067</spage><epage>1072</epage><pages>1067-1072</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424409884</isbn><isbn>1424409888</isbn><eisbn>1424409896</eisbn><eisbn>9781424409891</eisbn><abstract>This paper considers the problem of optimal path planning for unmanned aerial vehicles in the presence of radar-guided surface-to-air missiles. The goal is to generate trajectories that ensure that the aerial vehicle visit a given set of way points while avoiding a given set of known locations of radar units. In this paper we first discuss the general radar evasion problem. Given that the aircraft equations of motion are nonholonomically constrained, the main mathematical tools used in this paper stem from nonlinear differential geometry. Hence, we introduce the constrained dynamic interpolation optimal control problem and state the optimality conditions. We then apply these conditions to the radar evasion problem. Finally, we provide numerical simulations that illustrate the ideas proposed in this paper.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2007.4282835</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2007 American Control Conference, 2007, p.1067-1072 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_4282835 |
source | IEEE Xplore All Conference Series |
subjects | Aerospace control Airborne radar Aircraft Differential equations Geometry Missiles Nonlinear equations Optimal control Path planning Unmanned aerial vehicles |
title | Optimal Control and the Aircraft Radar Evasion Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20Control%20and%20the%20Aircraft%20Radar%20Evasion%20Problem&rft.btitle=2007%20American%20Control%20Conference&rft.au=Hussein,%20I.I.&rft.date=2007-07&rft.spage=1067&rft.epage=1072&rft.pages=1067-1072&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424409884&rft.isbn_list=1424409888&rft_id=info:doi/10.1109/ACC.2007.4282835&rft.eisbn=1424409896&rft.eisbn_list=9781424409891&rft_dat=%3Cieee_CHZPO%3E4282835%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-c5b8d6ca491d5c4fe743c1fb63a799bebeb821f5dcc3b61dcf19ab032669c0c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4282835&rfr_iscdi=true |