Loading…
Tensor-Based Blind Channel Identification
We propose a blind FIR channel identification method based on the parallel factor (Parafac) analysis of a 3rd-order tensor composed of the 4-th order output cumulants. Our algorithm is based on a single-step least squares (LS) minimization procedure instead of using classical three-step alternating...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a blind FIR channel identification method based on the parallel factor (Parafac) analysis of a 3rd-order tensor composed of the 4-th order output cumulants. Our algorithm is based on a single-step least squares (LS) minimization procedure instead of using classical three-step alternating least squares (ALS) methods. Using a Parafac-based decomposition, we avoid any kind of pre-processing such as the prewhitening operation, which is mandatory in most methods using higher-order statistics. Our method retrieves the channel vector without any permutation or scaling ambiguities. In addition, we establish a link between the cumulant tensor decomposition and the joint-diagonalization approach. Computer simulations illustrate the performance gains that our method provides with respect to other classical solutions. Initialization and convergence issues are also addressed. |
---|---|
ISSN: | 1550-3607 1938-1883 |
DOI: | 10.1109/ICC.2007.453 |