Loading…

Controlling a New Biped Robot Model Since Walking Using Neural Network

In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance....

Full description

Saved in:
Bibliographic Details
Main Authors: Tabar, A.F., Khoogar, A.R., Fakharzadegan, M.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 730
container_issue
container_start_page 725
container_title
container_volume
creator Tabar, A.F.
Khoogar, A.R.
Fakharzadegan, M.J.
description In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance. This NN controller allow accurate and dynamic following of prescribed trajectories, not simply control using "via" points specified by a teach pendant. It can significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, thereby improving tracking accuracy. Simulation results show that NN controller tracking performance is much better than PD controller tracking performance.
doi_str_mv 10.1109/ICITECHNOLOGY.2007.4290415
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4290415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4290415</ieee_id><sourcerecordid>4290415</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b7fa7865d5fa79e407d2218a9031a92df265c0db4ffec354a33e9d8e923c9e313</originalsourceid><addsrcrecordid>eNpFj11LwzAUhiMiqHO_wJvgfWs-2-ZSw-YKswPdEK9G2pxIXGxGWxn-ezsc-F6chwMPh_MidEdJSilR96Uu1zO9qFbL1dN7ygjJU8EUEVSeoWsqmBCjxcT5_0KzSzTt-08yhivJVXaF5jq2QxdD8O0HNriCA370e7D4JdZxwM_RQsCvvm0Av5mwO1qb_jgr-O5MGDEcYre7QRfOhB6mJ07QZj5b60UyPlfqh2XiaS6HpM6dyYtMWjlSgSC5ZYwWRhFOjWLWsUw2xNbCOWi4FIZzULYAxXijgFM-Qbd_dz0AbPed_zLdz_bUm_8CXslNxw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Controlling a New Biped Robot Model Since Walking Using Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tabar, A.F. ; Khoogar, A.R. ; Fakharzadegan, M.J.</creator><creatorcontrib>Tabar, A.F. ; Khoogar, A.R. ; Fakharzadegan, M.J.</creatorcontrib><description>In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance. This NN controller allow accurate and dynamic following of prescribed trajectories, not simply control using "via" points specified by a teach pendant. It can significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, thereby improving tracking accuracy. Simulation results show that NN controller tracking performance is much better than PD controller tracking performance.</description><identifier>ISBN: 1424410916</identifier><identifier>ISBN: 9781424410910</identifier><identifier>EISBN: 1424410924</identifier><identifier>EISBN: 9781424410927</identifier><identifier>DOI: 10.1109/ICITECHNOLOGY.2007.4290415</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Artificial neural networks ; Bipd robot ; Friction ; Legged locomotion ; Muscles ; neural network ; Neural networks ; PD control ; Plated Pneumatic Artificial Muscle ; Programmable control ; Three-term control ; Tracking loops</subject><ispartof>2007 IEEE International Conference on Integration Technology, 2007, p.725-730</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4290415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4290415$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tabar, A.F.</creatorcontrib><creatorcontrib>Khoogar, A.R.</creatorcontrib><creatorcontrib>Fakharzadegan, M.J.</creatorcontrib><title>Controlling a New Biped Robot Model Since Walking Using Neural Network</title><title>2007 IEEE International Conference on Integration Technology</title><addtitle>ICITECHNOLOGY</addtitle><description>In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance. This NN controller allow accurate and dynamic following of prescribed trajectories, not simply control using "via" points specified by a teach pendant. It can significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, thereby improving tracking accuracy. Simulation results show that NN controller tracking performance is much better than PD controller tracking performance.</description><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Bipd robot</subject><subject>Friction</subject><subject>Legged locomotion</subject><subject>Muscles</subject><subject>neural network</subject><subject>Neural networks</subject><subject>PD control</subject><subject>Plated Pneumatic Artificial Muscle</subject><subject>Programmable control</subject><subject>Three-term control</subject><subject>Tracking loops</subject><isbn>1424410916</isbn><isbn>9781424410910</isbn><isbn>1424410924</isbn><isbn>9781424410927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj11LwzAUhiMiqHO_wJvgfWs-2-ZSw-YKswPdEK9G2pxIXGxGWxn-ezsc-F6chwMPh_MidEdJSilR96Uu1zO9qFbL1dN7ygjJU8EUEVSeoWsqmBCjxcT5_0KzSzTt-08yhivJVXaF5jq2QxdD8O0HNriCA370e7D4JdZxwM_RQsCvvm0Av5mwO1qb_jgr-O5MGDEcYre7QRfOhB6mJ07QZj5b60UyPlfqh2XiaS6HpM6dyYtMWjlSgSC5ZYwWRhFOjWLWsUw2xNbCOWi4FIZzULYAxXijgFM-Qbd_dz0AbPed_zLdz_bUm_8CXslNxw</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Tabar, A.F.</creator><creator>Khoogar, A.R.</creator><creator>Fakharzadegan, M.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200703</creationdate><title>Controlling a New Biped Robot Model Since Walking Using Neural Network</title><author>Tabar, A.F. ; Khoogar, A.R. ; Fakharzadegan, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b7fa7865d5fa79e407d2218a9031a92df265c0db4ffec354a33e9d8e923c9e313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Bipd robot</topic><topic>Friction</topic><topic>Legged locomotion</topic><topic>Muscles</topic><topic>neural network</topic><topic>Neural networks</topic><topic>PD control</topic><topic>Plated Pneumatic Artificial Muscle</topic><topic>Programmable control</topic><topic>Three-term control</topic><topic>Tracking loops</topic><toplevel>online_resources</toplevel><creatorcontrib>Tabar, A.F.</creatorcontrib><creatorcontrib>Khoogar, A.R.</creatorcontrib><creatorcontrib>Fakharzadegan, M.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tabar, A.F.</au><au>Khoogar, A.R.</au><au>Fakharzadegan, M.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Controlling a New Biped Robot Model Since Walking Using Neural Network</atitle><btitle>2007 IEEE International Conference on Integration Technology</btitle><stitle>ICITECHNOLOGY</stitle><date>2007-03</date><risdate>2007</risdate><spage>725</spage><epage>730</epage><pages>725-730</pages><isbn>1424410916</isbn><isbn>9781424410910</isbn><eisbn>1424410924</eisbn><eisbn>9781424410927</eisbn><abstract>In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance. This NN controller allow accurate and dynamic following of prescribed trajectories, not simply control using "via" points specified by a teach pendant. It can significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, thereby improving tracking accuracy. Simulation results show that NN controller tracking performance is much better than PD controller tracking performance.</abstract><pub>IEEE</pub><doi>10.1109/ICITECHNOLOGY.2007.4290415</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424410916
ispartof 2007 IEEE International Conference on Integration Technology, 2007, p.725-730
issn
language eng
recordid cdi_ieee_primary_4290415
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Artificial neural networks
Bipd robot
Friction
Legged locomotion
Muscles
neural network
Neural networks
PD control
Plated Pneumatic Artificial Muscle
Programmable control
Three-term control
Tracking loops
title Controlling a New Biped Robot Model Since Walking Using Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Controlling%20a%20New%20Biped%20Robot%20Model%20Since%20Walking%20Using%20Neural%20Network&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Integration%20Technology&rft.au=Tabar,%20A.F.&rft.date=2007-03&rft.spage=725&rft.epage=730&rft.pages=725-730&rft.isbn=1424410916&rft.isbn_list=9781424410910&rft_id=info:doi/10.1109/ICITECHNOLOGY.2007.4290415&rft.eisbn=1424410924&rft.eisbn_list=9781424410927&rft_dat=%3Cieee_6IE%3E4290415%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b7fa7865d5fa79e407d2218a9031a92df265c0db4ffec354a33e9d8e923c9e313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4290415&rfr_iscdi=true