Loading…
Controlling a New Biped Robot Model Since Walking Using Neural Network
In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance....
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 730 |
container_issue | |
container_start_page | 725 |
container_title | |
container_volume | |
creator | Tabar, A.F. Khoogar, A.R. Fakharzadegan, M.J. |
description | In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance. This NN controller allow accurate and dynamic following of prescribed trajectories, not simply control using "via" points specified by a teach pendant. It can significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, thereby improving tracking accuracy. Simulation results show that NN controller tracking performance is much better than PD controller tracking performance. |
doi_str_mv | 10.1109/ICITECHNOLOGY.2007.4290415 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4290415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4290415</ieee_id><sourcerecordid>4290415</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b7fa7865d5fa79e407d2218a9031a92df265c0db4ffec354a33e9d8e923c9e313</originalsourceid><addsrcrecordid>eNpFj11LwzAUhiMiqHO_wJvgfWs-2-ZSw-YKswPdEK9G2pxIXGxGWxn-ezsc-F6chwMPh_MidEdJSilR96Uu1zO9qFbL1dN7ygjJU8EUEVSeoWsqmBCjxcT5_0KzSzTt-08yhivJVXaF5jq2QxdD8O0HNriCA370e7D4JdZxwM_RQsCvvm0Av5mwO1qb_jgr-O5MGDEcYre7QRfOhB6mJ07QZj5b60UyPlfqh2XiaS6HpM6dyYtMWjlSgSC5ZYwWRhFOjWLWsUw2xNbCOWi4FIZzULYAxXijgFM-Qbd_dz0AbPed_zLdz_bUm_8CXslNxw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Controlling a New Biped Robot Model Since Walking Using Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tabar, A.F. ; Khoogar, A.R. ; Fakharzadegan, M.J.</creator><creatorcontrib>Tabar, A.F. ; Khoogar, A.R. ; Fakharzadegan, M.J.</creatorcontrib><description>In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance. This NN controller allow accurate and dynamic following of prescribed trajectories, not simply control using "via" points specified by a teach pendant. It can significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, thereby improving tracking accuracy. Simulation results show that NN controller tracking performance is much better than PD controller tracking performance.</description><identifier>ISBN: 1424410916</identifier><identifier>ISBN: 9781424410910</identifier><identifier>EISBN: 1424410924</identifier><identifier>EISBN: 9781424410927</identifier><identifier>DOI: 10.1109/ICITECHNOLOGY.2007.4290415</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Artificial neural networks ; Bipd robot ; Friction ; Legged locomotion ; Muscles ; neural network ; Neural networks ; PD control ; Plated Pneumatic Artificial Muscle ; Programmable control ; Three-term control ; Tracking loops</subject><ispartof>2007 IEEE International Conference on Integration Technology, 2007, p.725-730</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4290415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4290415$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tabar, A.F.</creatorcontrib><creatorcontrib>Khoogar, A.R.</creatorcontrib><creatorcontrib>Fakharzadegan, M.J.</creatorcontrib><title>Controlling a New Biped Robot Model Since Walking Using Neural Network</title><title>2007 IEEE International Conference on Integration Technology</title><addtitle>ICITECHNOLOGY</addtitle><description>In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance. This NN controller allow accurate and dynamic following of prescribed trajectories, not simply control using "via" points specified by a teach pendant. It can significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, thereby improving tracking accuracy. Simulation results show that NN controller tracking performance is much better than PD controller tracking performance.</description><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Bipd robot</subject><subject>Friction</subject><subject>Legged locomotion</subject><subject>Muscles</subject><subject>neural network</subject><subject>Neural networks</subject><subject>PD control</subject><subject>Plated Pneumatic Artificial Muscle</subject><subject>Programmable control</subject><subject>Three-term control</subject><subject>Tracking loops</subject><isbn>1424410916</isbn><isbn>9781424410910</isbn><isbn>1424410924</isbn><isbn>9781424410927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj11LwzAUhiMiqHO_wJvgfWs-2-ZSw-YKswPdEK9G2pxIXGxGWxn-ezsc-F6chwMPh_MidEdJSilR96Uu1zO9qFbL1dN7ygjJU8EUEVSeoWsqmBCjxcT5_0KzSzTt-08yhivJVXaF5jq2QxdD8O0HNriCA370e7D4JdZxwM_RQsCvvm0Av5mwO1qb_jgr-O5MGDEcYre7QRfOhB6mJ07QZj5b60UyPlfqh2XiaS6HpM6dyYtMWjlSgSC5ZYwWRhFOjWLWsUw2xNbCOWi4FIZzULYAxXijgFM-Qbd_dz0AbPed_zLdz_bUm_8CXslNxw</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Tabar, A.F.</creator><creator>Khoogar, A.R.</creator><creator>Fakharzadegan, M.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200703</creationdate><title>Controlling a New Biped Robot Model Since Walking Using Neural Network</title><author>Tabar, A.F. ; Khoogar, A.R. ; Fakharzadegan, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b7fa7865d5fa79e407d2218a9031a92df265c0db4ffec354a33e9d8e923c9e313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Bipd robot</topic><topic>Friction</topic><topic>Legged locomotion</topic><topic>Muscles</topic><topic>neural network</topic><topic>Neural networks</topic><topic>PD control</topic><topic>Plated Pneumatic Artificial Muscle</topic><topic>Programmable control</topic><topic>Three-term control</topic><topic>Tracking loops</topic><toplevel>online_resources</toplevel><creatorcontrib>Tabar, A.F.</creatorcontrib><creatorcontrib>Khoogar, A.R.</creatorcontrib><creatorcontrib>Fakharzadegan, M.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tabar, A.F.</au><au>Khoogar, A.R.</au><au>Fakharzadegan, M.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Controlling a New Biped Robot Model Since Walking Using Neural Network</atitle><btitle>2007 IEEE International Conference on Integration Technology</btitle><stitle>ICITECHNOLOGY</stitle><date>2007-03</date><risdate>2007</risdate><spage>725</spage><epage>730</epage><pages>725-730</pages><isbn>1424410916</isbn><isbn>9781424410910</isbn><eisbn>1424410924</eisbn><eisbn>9781424410927</eisbn><abstract>In this paper, a new biped model are evaluated and then a stable neural network controller is used to control it. The biped model has slink and 6 degrees of freedom and actuated by plated pneumatic artificial muscle, which have a very high power to weight ratio and an inherent adaptable compliance. This NN controller allow accurate and dynamic following of prescribed trajectories, not simply control using "via" points specified by a teach pendant. It can significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, thereby improving tracking accuracy. Simulation results show that NN controller tracking performance is much better than PD controller tracking performance.</abstract><pub>IEEE</pub><doi>10.1109/ICITECHNOLOGY.2007.4290415</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424410916 |
ispartof | 2007 IEEE International Conference on Integration Technology, 2007, p.725-730 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4290415 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive control Artificial neural networks Bipd robot Friction Legged locomotion Muscles neural network Neural networks PD control Plated Pneumatic Artificial Muscle Programmable control Three-term control Tracking loops |
title | Controlling a New Biped Robot Model Since Walking Using Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Controlling%20a%20New%20Biped%20Robot%20Model%20Since%20Walking%20Using%20Neural%20Network&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Integration%20Technology&rft.au=Tabar,%20A.F.&rft.date=2007-03&rft.spage=725&rft.epage=730&rft.pages=725-730&rft.isbn=1424410916&rft.isbn_list=9781424410910&rft_id=info:doi/10.1109/ICITECHNOLOGY.2007.4290415&rft.eisbn=1424410924&rft.eisbn_list=9781424410927&rft_dat=%3Cieee_6IE%3E4290415%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b7fa7865d5fa79e407d2218a9031a92df265c0db4ffec354a33e9d8e923c9e313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4290415&rfr_iscdi=true |